Math 308: Week-in-Review 5

Shelvean Kapita

Review for Exam 1
$\sqrt{ } y^{\prime}+\frac{2 t}{t^{2}-4} y=\frac{3 t^{2}}{t^{2}-4}$ in standard form

1. For the initial value problem $\left(t^{2}-4\right) y^{\prime}+2 t y=3 t^{2}, \quad y(1)=-3$
(a) Determine an interval in which the solution to the initial value problem is certain to exist.
(b) Solve the initial value problem.
(a) a solution of $y^{\prime}+p(t) y=g(t)$ exists in an interval where $p(t), g(t)$ are continuous, $p(t)=\frac{2 t}{t^{2}-4}$ is continuous if $t \neq \pm 2$ and $g(t)=\frac{3 t^{2}}{t^{2}-4}$ is continuous at all $t \neq \pm 2$

(b) note that $\left(t^{2}-4\right) y^{\prime}+2 t y=\left[\left(t^{2}-4\right) y\right]^{\prime} *$ product rule $*$

$$
\begin{aligned}
{\left[\left(t^{2}-4\right) y\right]^{\prime} } & =3 t^{2} \\
\left(t^{2}-4\right) y & =3 \int_{3} t^{2} d t=\frac{3}{3} t^{3}+C
\end{aligned}
$$

* no need to compute

$$
\begin{aligned}
& \text { integrating factor } \\
& \text { in this cade }
\end{aligned}
$$

$$
y=\frac{t^{3}+c}{t^{2}-4} \Rightarrow \text { plug in initial condition }
$$

$$
-3=\frac{1^{3}+c}{1^{2}-4} \Rightarrow 9=1+c \Rightarrow c=8
$$

$$
y=\frac{t^{3}+8}{t^{2}-4}
$$

2. A tank initially contains 10 L of fresh water. Brine containing $20 \mathrm{~g} / \mathrm{L}$ of salt flows into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. The solution is kept well stirred and flows out of the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$. Determine the concentration of salt in the tank as a function of time.

* Set variables *
$Q(t) \rightarrow$ amount of salt at time t in grams (g)
* find differential equation *

$$
\begin{aligned}
& \frac{d Q}{d t}=\text { rate in - rate out } \\
& =\binom{\text { concentration }}{\text { in }} *\binom{\text { flow rate }}{\text { in }}-\binom{\text { concentration }}{\text { out }} *\binom{\text { flow rate }}{\text { out }} \\
& =(20 \mathrm{~g} / \mathrm{L}) *(3 L / \min)-\left(\frac{Q(t)}{V(t)}\right) *(2 L / \mathrm{min}) \\
& =60-\frac{2 Q}{V(t)} \text { where } V(t)=10+(3-2) t \\
& V(t)=10+t * \text { variable volume } \\
& \left\{\begin{array}{l}
\frac{d Q}{d t}=60-\frac{2 Q}{10+t} \\
Q(0)=0 \text { (pure water) }
\end{array}\right. \\
& \rightarrow \text { Goal: Find concentration } \\
& \frac{Q(t)}{V(t)}=\frac{Q(t)}{10+t} \\
& * \text { Find } Q(t) \text { * } \\
& Q^{\prime}(t)+\frac{2}{10+t} Q(t)=60, p(t)=\frac{2}{10+t}, \mu(t)=e^{\int \frac{2}{10+t} d t}=e^{2 \int \frac{1}{10+t} d t}=e^{2 \ln (10+t)} \\
& {\left[(10+t)^{2} Q(t)\right]^{\prime}=60(10+t)^{2}} \\
& =e^{\ln (10+t)^{2}} \\
& =(10+t)^{2} \\
& (10+t)^{2} Q(t)=60 \int(10+t)^{2} d t=\frac{60}{3}(10+t)^{3}+C \\
& Q(t)=20(10+t)+c(10+t)^{-2} \\
& \text { * Find C * } \\
& Q(0)=200+\frac{C}{100}=0 \Rightarrow C=-20,000 \\
& Q(t)=20(10+t)-\frac{20,000}{(10+t)^{2}} \\
& \begin{array}{l}
7 \text { Concentration * } \\
\text { recall } V(t)=10+t
\end{array} \frac{Q(t)}{V(t)}=\frac{20(10+t)-\frac{20,000}{(10+t)^{2}}}{10+t}=20-\frac{20,000}{(10+t)^{3}}
\end{aligned}
$$

3. Given the differential equation $\frac{d y}{d t}=7 y-y^{2}-10=-\left(y^{2}-7 y+10\right)$
(a) Find the equilibrium solutions.

$$
=-(y-5)(y-2)
$$

(b) Sketch the phase line and determine whether the equilibrium solutions are stable, unstable, or semistable.
(c) Sketch the graph of some solutions.
(d) Determine the behavior of $y(t)$ as t increases for all possible values of $y(0)=y_{0}$.
(e) Solve the equation.
(a) $f(y)=-(y-5)(y-2)=0$
(b)

(d) $*$ use separation of variables + partial fractions *

$$
\begin{gathered}
y^{\prime}=-(y-5)(y-2) \Rightarrow \int \frac{1}{(y-5)(y-2)} d y=\int(-1) d x \\
\left.\frac{1}{(y-5)(y-2)}=\frac{A}{y-5}+\frac{B}{y-2} \Rightarrow 1=A(y-2)+B(y-5) \Rightarrow B=-1 / 3\right) A=1 / 3 \\
\\
\left.\left.\int \frac{1}{(y-5)(y-2)} d y=\frac{1}{3} \int\left(\frac{1}{y-5}-\frac{1}{y-2}\right) d y=\frac{1}{3}|\ln | y-5|-\ln | y-2 \right\rvert\,\right]=\frac{1}{3} \ln \left|\frac{y-5}{y-2}\right| \\
\ln \left|\frac{y-5}{y-2}\right|=\int-3 d x=-3 x+C \Rightarrow\left|\frac{y-5}{y-2}\right|=e^{c} e^{-3 x} \Rightarrow \frac{y-5}{y-2}=C e^{-3 x} \text { with } C= \pm e^{c} \neq 0 \\
y-5=y C e^{-3 x}-2 C e^{-3 x} \Rightarrow y\left(1-C e^{-3 x}\right)=5-2 C e^{-3 x} \\
\text { initial condition } \\
y=\frac{5-2 C e^{-3 x}}{1-C e^{-3 x}}
\end{gathered}
$$

4. Solve the following equations. If any initial value is given, then solve the initial value problem. If no initial value is given, then find the general solution. Find an explicit solution if possible.

* first order linear x
(a) $\begin{aligned} & y^{\prime}-2 y=x^{2} e^{2 x} \\ & P(x)=-2, \mu(x)=e^{-2 x} \quad * \text { integrating factor } *\end{aligned}$

$$
\begin{aligned}
e^{-2 x} y^{\prime}-2 e^{-2 x} y & =x^{2} e^{2 x} \cdot e^{-2 x}=x^{2} \\
\left(e^{-2 x} y\right)^{\prime} & =x^{2} \Rightarrow e^{-2 x} y=\int x^{2}=\frac{x^{3}}{3}+C \\
y & =\frac{x^{3}}{3} e^{2 x}+C e^{2 x}
\end{aligned}
$$

(b) $f^{\prime \prime}-7 f^{\prime}+12 f=2 e^{5 t}, \quad f(1)=0, f^{\prime}(1)=-1 \quad$ * second order, constant coeff,

* find homogeneous solution * non-homogeneous * $y=y_{c}+y_{p}$

$$
\begin{aligned}
& \lambda^{2}-7 \lambda+12=0 \quad * \text { characteristic polynomial * } \\
& (\lambda-4)(\lambda-3)=0 \Rightarrow \lambda=4,3 \Rightarrow y_{c}(t)=c_{1} e^{3 t}+c_{2} e^{4 t} * \text { general solution of }
\end{aligned}
$$

* find particular solution $*$ Guess $y_{p}=A e^{5 t} \leftarrow$ not homogeneous solution*

$$
\begin{aligned}
& y_{p}^{\prime}=5 A e^{5 t}, y_{p}^{\prime \prime}=25 A e^{5 t} \\
& y_{p}^{\prime \prime}-7 y_{p}^{\prime}+12 y_{p}=A e^{5 t}(25-(7)(5)+12)=2 A e^{5 t}=2 e^{5 t} \Rightarrow A=1
\end{aligned}
$$

$$
\Rightarrow y_{p}=e^{5 t}
$$

St $4 t$ st

* general solution of nonhomogeneous ign $x y(t)=c_{2} e+c_{2} e+e$
* Solve for $c_{1}, c_{2} ; y(1)=c_{1} e^{3}+c_{2} e^{4}+e^{5}=0, y^{1}(t)=3 c_{1} e^{3 t}+4 c_{2} e^{4 t}+5 e^{5 t}$

$$
\begin{aligned}
& y^{\prime}(1)=3 c_{1} e^{3}+4 c_{2} e^{4}+5 e^{5}=-1 \quad \text { V } \quad \begin{array}{l}
c_{1}
\end{array}=e^{-3}+e^{2} \\
& c_{2}=-e^{-4}-2 e
\end{aligned}
$$

$$
y(x)=\left(e^{-3}+e^{2}\right) e^{3 t}-\left(e^{-4}+2 e\right) e^{4 t}+e^{5 t}
$$

(c) $(4 t-2 y) y^{\prime}=4 t-4 y \quad *$ fist order non linear $*$

$$
\begin{aligned}
& m(t, y)+N(t, y) y^{\prime}=0 \\
& (\underbrace{4 y-4 t)}+(\underbrace{(4 t-2 y}) y^{\prime}=0 \quad m_{y}=4, N_{t}=4 \sqrt{\text { exact }} \\
& F_{t}=M=4 y-4 t, F_{y}=N=4 t-2 y \\
& F(t, y)=\int(4 y-4 t) d t=4 t y-\frac{4 t^{2}}{2}+h(y) \\
& F_{y}=4 t+h^{\prime}(y)=N=4 t-2 y \Rightarrow h^{\prime}(y)=-2 y \\
& \Rightarrow h(y)=-y^{2}+c \\
& F(t, y)=4 t y-2 t^{2}-y^{2}+c
\end{aligned}
$$

(d) $y^{\prime}=t y^{2}-t \quad$ * first order non-lineer*

$$
\begin{aligned}
& y^{\prime}=t\left(y^{2}-1\right) \Rightarrow \frac{1}{y^{2}-1} y^{\prime}=t \\
& \text { Equilibrium solo: } \\
& y^{2}-1=0 \Rightarrow y= \pm 1 \\
& \begin{aligned}
\int \frac{1}{y^{2}-1} d t & =\int \frac{1}{(y-1)(y+1)} d t=\int t d t \\
& \Rightarrow \frac{1}{2}\left(\left(\frac{1}{y-1}-\frac{1}{y+1}\right) d t=\int t d t\right.
\end{aligned} \\
& \Rightarrow \quad[\ln |y-1|-\ln |y+1|]=2 \int t d t \\
& \frac{1}{(y-1)(y+1)}=\frac{A}{y-1}+\frac{B}{y+1} * \text { partial } \\
& =A(y+1)+B(y-1) \\
& \Rightarrow A=1 / 2, B=-1 / 2 \\
& C= \pm e^{c} \neq 0 \\
& \Rightarrow \ln \left|\frac{y-1}{y+1}\right|=t^{2}+c \\
& \begin{array}{r}
\Rightarrow \quad\left|\frac{y-1}{y+1}\right|=e \cdot e^{t^{2}} \Rightarrow \frac{y-1}{y+1}=C e^{t^{2}} \Rightarrow y\left(1-C e^{t^{2}}\right)=1+C e^{t^{2}} \\
y=\frac{1+C e^{t^{2}}}{1-C e^{t^{2}}} \quad O R
\end{array} \\
& y=-\operatorname{coth}\left(\frac{t^{2}}{2}+c_{1}\right)
\end{aligned}
$$

(e) $g^{\prime \prime}+2 g^{\prime}+2 g=2 t, \quad g(0)=0, g^{\prime}(0)=1 \quad * 2$ nd order, nonhomogeneous,

* find homogeneous sols*

$$
\lambda^{2}+2 \lambda+2=0 \Rightarrow \lambda=-2 \pm \sqrt{2^{2}-4 \cdot 2} \Rightarrow g=g_{c}+g_{p}
$$

$$
g_{c}(t)=c_{1} e^{-t} \cos (t)+c_{2} e^{-t} \sin (t) \quad x^{2} \quad \text { same degree polynomial }
$$

* Guess particular soln: $g_{p}=A t+B$

$$
\begin{aligned}
& g_{p}^{\prime}=A, g_{p}^{\prime \prime}=0, \quad \begin{array}{l}
g_{p}^{\prime \prime}+2 g_{p}^{\prime}+2 g_{p}=2 A+2(A t+B) \\
\\
=2 A t+(2 A+2 B) \\
\\
g=g_{c}+g_{p}=c_{1} e^{-t} \cos (t)+c_{2} e^{-t} \sin (t)+t-1 \\
g(0)=c_{1}-1=0 \Rightarrow c_{1}=1 \\
g^{\prime}(t)=-c_{1} e^{-t} \cos (t)-c_{1} e^{-t} \sin (t)-c_{2} e^{-t} \sin (t) \\
+c_{2} e^{-t} \cos (t)+1
\end{array} \\
& \begin{array}{l}
2 A+2 B=0 \Rightarrow 2 B=-2 A \\
g^{\prime}(0)=-c_{1}+c_{2}+1=c_{2}=1 \\
(f) u^{\prime \prime}+2 u^{\prime}+u=2 e^{-t}
\end{array}
\end{aligned}
$$

$2^{\text {nd }}$ order nonhomogeneous, const. coeff $\Rightarrow u=u_{c}+u_{p}$

* homogeneous solution * $\lambda^{2}+2 \lambda+1=0 \Rightarrow(\lambda+1)^{2}=0 \Rightarrow \lambda=-1$ (repeated $\left.\begin{array}{c}\text { root }\end{array}\right)$

$$
v_{c}(t)=c_{1} e^{-t}+c_{2} t e^{-t}
$$

* find particular solution $* \quad u_{p}=A e^{-t} \times$ (homogeneous)

$$
\begin{array}{rl}
u_{p}^{\prime} & =2 A t e^{-t}-A t^{2} e^{-t} \\
& =2 A t e^{-t}-u_{p} \\
u_{p}^{\prime \prime} & =2 A e^{-t}-2 A t e^{-t}-u_{p}^{\prime}=2 A e^{-t}-4 A t e^{-t}+u_{p} \\
u_{p}^{\prime \prime}+2 u_{p}^{\prime}+u_{p}=2 A e^{-t}-4 A * e+4 e^{-t} x & * u_{p}=A e^{2} * * \\
& 4 A t e^{-t}-2 u_{p}+y_{p}=2 A e^{-t}=2 e^{-t} \\
u_{p}=t^{2} e^{-t} \quad \Rightarrow A=1
\end{array}
$$

$u=c e^{-t}+c t e^{-t} 2^{2}-t$ general solution of the non-homogeneons equation
5. Solve the differential equation by finding an integrating factor that makes the equation exact

$$
\underbrace{\left(e^{x}-e^{x} y-e^{3 x}\right)}_{M}+\underbrace{e^{x}}_{N} y^{\prime}=0
$$

* multiply equ by μ

$$
\begin{aligned}
& \left(e^{-x}-e^{-x} y-e^{x}\right)+e^{-x} y^{\prime}=0 \\
& m_{y}=-e^{-x}, N_{x}=-e^{-x}
\end{aligned}
$$

exact
6. Verify that $y_{1}(t)=t$ is a solution of the differential equation

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=2
$$

then find a second solution y_{2} so that $y_{1}(t)$ and $y_{2}(t)$ form a fundamental set of solutions.

$$
y_{1}=t, y_{1}^{\prime}=1, y_{1}^{\prime \prime}=0 \Rightarrow t^{2} \cdot 0+t(t+2) \cdot 1+(t+2) t=0 \vee * y_{1} \text { is a soln }
$$

* rewrite in standard form $*$

$$
p(t)=-1-2 / t
$$

$$
e^{-\int p(t) d t}=e^{\int 1 d t} \cdot e^{\int 2 / t d t}
$$

Liouvillés
formula

$$
\begin{aligned}
& y^{\prime \prime}-\frac{t+2}{t} y^{\prime}+\left(\frac{1}{t}+\frac{2}{t^{2}}\right) y=0 \\
& w=\int \frac{e^{-\int p(t)} d t}{y_{1}^{2}} d t=\int \frac{t^{2} \cdot e^{t}}{t^{2}} d t=e^{t}
\end{aligned}
$$

$$
=e^{t} \cdot t^{2}
$$

* general solution $y=c_{1} t+c_{2} t e^{t}$

$$
\begin{aligned}
& F_{x}=e^{-x}-e^{-x} y-e^{x}=m, \quad F_{y}=e^{-x}=N \Rightarrow F(x, y)=\int e^{-x} d y=e^{-x} y+h(x) \\
& F_{x}=-y e^{-x}+h^{\prime}(x)=M \\
& =-y e^{-x}+\underbrace{e^{-x}-e^{x}}_{h^{\prime}(x)} \\
& \text { or } \quad y=C e^{x}+1+e^{2 x} \leqslant \text { explicit } \\
& h(x)=-e^{-x}-e^{x}+c
\end{aligned}
$$

7. Without solving the initial value problem, determine an interval in which the solution is guaranteed to exist.
$y^{\prime}+\ln (t+3) y=\sqrt{16-t^{2}}, y(-1)=3$. linear \Rightarrow existence \&

* in standard form $x y^{\prime}+p(t) y=g(t)$
* In standard form $y+p(t) y=g(t) \quad p(t), g(t)$ continuous
$t+3>0$ (since $\ln (*)$ defined when $*>0$)
$t>-3$ and $16-t^{2} \geqslant 0($ since $\sqrt{*}$ defined when $* \geqslant 0)$

$$
16 \geqslant t^{2} \Leftrightarrow-4 \leq t \leq 4
$$

Solution defined

$$
\text { on }(-3,4)
$$

8. Without solving the initial value problem, state for which values of t_{0} and y_{0} the initial value problem is guaranteed to have a unique solution in at least some small interval around t_{0}.

$$
y^{\prime}=\sqrt{1-t^{2}-y^{2}}, \quad y\left(t_{0}\right)=y_{0} \text { non-linear, first order }
$$

$$
f(t, y)=\sqrt{1-t^{2}-y^{2}}
$$

* Existence \& uniqueness if (1) f is continuous near $\left(t_{0}, y_{0}\right)$
(2) $\frac{\partial f}{\partial y}$ is continuous near $\left(t_{0}, y_{0}\right)$
* f is defined and continuous
if $1-t^{2}-y^{2} \geqslant 0$

$$
1 \geqslant t^{2}+y^{2} \Rightarrow t^{2}+y^{2} \leqslant 1 \text { (inside a disk of radius 1) }
$$

$$
* \frac{x y}{\partial y}=\frac{-y}{\sqrt{1-z^{2}-y^{2}}} \text { is corniness on } t^{2}+y^{2}<1
$$

9. Solve the initial value problem and determine the interval where the solution exists

$$
y^{\prime}=3 t y^{2}, y(0)=y_{0} * \text { non-linear, separable } *
$$

$$
\begin{aligned}
& \int \frac{1}{y^{2}} d y=\int 3 t d t \\
& -y^{-1}=\frac{3}{2} t^{2}+C \\
& \begin{aligned}
-\frac{1}{y_{0}} & =C \\
y & =\frac{-1}{\frac{3}{2} t^{2}+C}=\frac{-1}{\frac{3}{2} t^{2}-\frac{1}{y_{0}}}
\end{aligned} \\
& \begin{aligned}
-\frac{1}{y_{0}} & =C \\
y & =\frac{-1}{\frac{3}{2} t^{2}+C}=\frac{-1}{\frac{3}{2} t^{2}-\frac{1}{y_{0}}}
\end{aligned} \\
& \text { Equilibrium solutions } \\
& y(t)=0 \quad \forall t \text { if } y_{0}=0 \\
& \Rightarrow \text { solution exists for } \\
& t \in(-\infty, \infty) \\
& \text { Equilibrium solutions } \\
& \Rightarrow \text { solution exists for } \\
& \text { * if } y_{0}<0 \text { then } y \text { exists on }(-\infty, \infty) \\
& \text { * if } y_{0}>0 \text {, then } y \text { exists on } \frac{\left(-\sqrt{\frac{2}{3 y_{0}}}, \sqrt{\frac{2}{3 y_{0}}}\right)}{-\sqrt{\frac{2}{3 y_{0}}} \sqrt{\frac{2}{3 y_{0}}}} \\
& \frac{3}{2} t^{2}=\frac{1}{y_{0}} \Rightarrow t^{2}=\frac{2}{3} \frac{1}{y_{0}} \text { end points when } y_{0}>0 \\
& \Rightarrow t= \pm \sqrt{\frac{2}{3 y_{0}}}
\end{aligned}
$$

