Note $\sharp 2$: Exam 01 Review

Problem 1. (a) What is the radius of the sphere $x^2 + y^2 + z^2 - 2x + 4y - 6z - 2 = 0$? (b) What is the intersection of the sphere with the *xz*-plane?

Problem 2. Find the scalar and vector projection of (12, 1, 2) onto (-1, 4, 8).

Problem 3. Which of the following expressions are meaningful? Select all.

(a) $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$ (b) $\mathbf{a} \times (\mathbf{b} \cdot \mathbf{c})$ (c) $|\mathbf{a}| (\mathbf{b} \cdot \mathbf{c})$ (d) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$ (e) $(\mathbf{a} \cdot \mathbf{b}) \times (\mathbf{c} \cdot \mathbf{d})$

Problem 4. Which of the following statements is correct?

(a) $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{i} - \mathbf{j} + \mathbf{k}$ are parallel

- (b) $2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $-2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ are orthogonal
- (c) None of the above

Problem 5. Find the point at which the line x = 2 - t, y = 3t, z = 1 + 2t intersects the plane 2x + 3y - z = 13.

Problem 6. Are these skew lines(do not intersect and are not parallel)?

 $L_1: \quad x = 1 + 2t, \quad y = -2 - t, \quad z = 3 + 4t$ $L_2: \quad x = s, \quad y = 2 - s, \quad z = -3 - s$

Problem 7. a) Find a scalar equation of the plane that passes through the points P(2,1,3), Q(3,-1,2), and R(4,2,4).

b) Find the area of the triangle determined by P, Q, R.

Problem 8. Find the equation of the following planes.

a) The plane passes through the point (2, 1, -9) and is perpendicular to the line x = 1 - 2t, y = -1 + 3t, z = 5t.

- b) The plane passes through the point (3, 0, -4) and contains line x = 1 + 2t, y = 2 3t, z = t.
- c) The plane passes through the point (2, 1, -9) and is parallel to 6x + 5y = 3z + 5.

Problem 9. Consider the planes x + y + z = 2 and x + 2y + 2z = 1.

a) Find the angle between the planes.

b) Find the line of intersection of these two planes.

Problem 10. Find the domain of the vector function $\mathbf{r}(t) = \left\langle \frac{t-3}{t-2}, \sin(\sqrt{t+3}), \ln(16-t^2) \right\rangle$.

Problem 11. Find $\lim_{t\to 1} \mathbf{r}(t)$ where $\mathbf{r}(t) = \left\langle \frac{\sin(\pi t)}{\ln t}, \frac{t-1}{t^2+3t-4}, te^{-2t} \right\rangle$.

Problem 12. Given the curves $r_1(t) = \langle 1 - \cos t, t, 3 - t \rangle$ and $r_2(s) = \langle s^2, \sin(s), 3 + s \rangle$ intersect at the point (0, 0, 3), find the angle of intersection of the two curves.

Problem 13. Find parametric equations for the tangent line to the space curve $\mathbf{r}(t) = \left\langle 2t^2 + t + 1, \sqrt{9t + 16}, e^{t^2 - t} \right\rangle$ at the point (1, 4, 1).

Problem 14. Find the unit tangent vector $\mathbf{T}(t)$ to the curve $\mathbf{r}(t) = \langle \sin(2t), -\cos(2t), 4t \rangle$ at the point $(0, 1, 2\pi)$.

Problem 15. Find the length of the curve $\mathbf{r}(t) = \langle 6t, t^2, \frac{1}{9}t^3 \rangle, 0 \le t \le 1$.

Problem 16. Find the curvature, κ , of $\mathbf{r}(t) = \langle \cos t, \sin t, 0 \rangle$.

Problem 17. Given the velocity vector $\mathbf{v}(t) = \langle te^{-t}, \sin(2t), 3t^2 \rangle$ and $\mathbf{r}(0) = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$. Find the position vector, $\mathbf{r}(t)$, at time t.