Note $\sharp 2$: Exam 01 Review

Problem 1. (a) What is the radius of the sphere $x^{2}+y^{2}+z^{2}-2 x+4 y-6 z-2=0$?
(b) What is the intersection of the sphere with the $x z$-plane?

Problem 2. Find the scalar and vector projection of $\langle 12,1,2\rangle$ onto $\langle-1,4,8\rangle$.
Problem 3. Which of the following expressions are meaningful? Select all.
(a) $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$
(b) $\mathbf{a} \times(\mathbf{b} \cdot \mathbf{c})$
(c) $|\mathbf{a}|(\mathbf{b} \cdot \mathbf{c})$
(d) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})$
(e) $(\mathbf{a} \cdot \mathbf{b}) \times(\mathbf{c} \cdot \mathbf{d})$

Problem 4. Which of the following statements is correct?
(a) $\mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\mathbf{i}-\mathbf{j}+\mathbf{k}$ are parallel
(b) $2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $-2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ are orthogonal
(c) None of the above

Problem 5. Find the point at which the line $x=2-t, \quad y=3 t, \quad z=1+2 t$ intersects the plane $2 x+3 y-z=13$.
Problem 6. Are these skew lines(do not intersect and are not parallel)?

$$
\begin{array}{ll}
L_{1}: & x=1+2 t, \quad y=-2-t, \quad z=3+4 t \\
L_{2}: & x=s, \quad y=2-s, \quad z=-3-s
\end{array}
$$

Problem 7. a) Find a scalar equation of the plane that passes through the points $P(2,1,3)$, $Q(3,-1,2)$, and $R(4,2,4)$.
b) Find the area of the triangle determined by P, Q, R.

Problem 8. Find the equation of the following planes.
a) The plane passes through the point $(2,1,-9)$ and is perpendicular to the line $x=1-2 t, y=$ $-1+3 t, z=5 t$.
b) The plane passes through the point $(3,0,-4)$ and contains line $x=1+2 t, y=2-3 t, z=t$.
c) The plane passes through the point $(2,1,-9)$ and is parallel to $6 x+5 y=3 z+5$.

Problem 9. Consider the planes $x+y+z=2$ and $x+2 y+2 z=1$.
a) Find the angle between the planes.
b) Find the line of intersection of these two planes.

Problem 10. Find the domain of the vector function $\mathbf{r}(t)=\left\langle\frac{t-3}{t-2}, \sin (\sqrt{t+3}), \ln \left(16-t^{2}\right)\right\rangle$.
Problem 11. Find $\lim _{t \rightarrow 1} \mathbf{r}(t)$ where $\mathbf{r}(t)=\left\langle\frac{\sin (\pi t)}{\ln t}, \frac{t-1}{t^{2}+3 t-4}, t e^{-2 t}\right\rangle$.
Problem 12. Given the curves $r_{1}(t)=\langle 1-\cos t, t, 3-t\rangle$ and $r_{2}(s)=\left\langle s^{2}, \sin (s), 3+s\right\rangle$ intersect at the point $(0,0,3)$, find the angle of intersection of the two curves.
Problem 13. Find parametric equations for the tangent line to the space curve $\mathbf{r}(t)=\left\langle 2 t^{2}+t+1, \sqrt{9 t+16}, e^{t^{2}-t}\right\rangle$ at the point $(1,4,1)$.
Problem 14. Find the unit tangent vector $\mathbf{T}(t)$ to the curve $\mathbf{r}(t)=\langle\sin (2 t),-\cos (2 t), 4 t\rangle$ at the point ($0,1,2 \pi$).
Problem 15. Find the length of the curve $\mathbf{r}(t)=\left\langle 6 t, t^{2}, \frac{1}{9} t^{3}\right\rangle, 0 \leq t \leq 1$.
Problem 16. Find the curvature, κ, of $\mathbf{r}(t)=\langle\cos t, \sin t, 0\rangle$.
Problem 17. Given the velocity vector $\mathbf{v}(t)=\left\langle t e^{-t}, \sin (2 t), 3 t^{2}\right\rangle$ and $\mathbf{r}(0)=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$. Find the position vector, $\mathbf{r}(t)$, at time t.

