Problem 1. Match the vector fields F with the plots labeled I-IV. Give reasons for your choices.
(a) $\mathbf{F}(x, y)=\langle x,-y\rangle$
(b) $\mathbf{F}(x, y)=\langle y, x-y\rangle$
(c) $\mathbf{F}(x, y)=\langle y, y+2\rangle$
(d) $\mathbf{F}(x, y)=\langle\cos (x+y), x\rangle$

Problem 2. Evaluate $\int_{C} x y^{2} d s$, where C is the right half of the circle $x^{2}+y^{2}=9$, oriented counterclockwise.
Problem 3. Evaluate $\int_{C} 2 y d s$, where C is the arc of the curve $x=y^{2}$ from $(1,-1)$ to $(4,2)$.
Problem 4. Evaluate $\int_{C}\left(x^{2}+y\right) d s$ where C consists of the line segment from the point $(1,4)$ to $(3,-1)$.
Problem 5. Evaluate $\int_{C} x y z d s$, where C is the line segment from the point $(-2,0,3)$ to $(0,1,2)$.
Problem 6. Evaluate $\int_{C} y d x+x^{2} d y$, where C is decribed by $\mathbf{r}(t)=\left\langle 3 e^{t}, e^{2 t}\right\rangle, 0 \leq t \leq 1$.
Problem 7. Evaluate $\int_{C} x d x+y d y$, where C is the arc of the parabola $x=4-y^{2}$ from $(-5,-3)$ to $(3,1)$.
Problem 8. Evaluate $\int_{C}(x+y) d z+(y-x) d y+z d x$ where $C: x=t^{4}, y=t^{3}, z=t^{2}, 0 \leq t \leq 1$.

Problem 9. Evaluate $\int_{C} x y d x+x^{2} d y+z d z$ where C is the line segment from $(0,-1,1)$ to $(2,3,-1)$.
Problem 10. Find the work done by the force field $\mathbf{F}(x, y)=\left\langle x^{2}, x y\right\rangle$ in moving an object counterclockwise around the right half of the circle $x^{2}+y^{2}=9$.

Problem 11. Suppose we are moving a particle from the point $(0,0)$ to the point $(2,4)$ in a force field $\mathbf{F}(x, y)=\left\langle y^{2}, x\right\rangle$. Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where:
(a) The particle travels along the line segment from $(0,0)$ to $(2,4)$.
(b) The particle travels along the curve $y=x^{2}$ from $(0,0)$ to $(2,4)$.

Problem 12. Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}, C: \mathbf{r}(\mathbf{t})=\left\langle t, t^{2}, t^{4}\right\rangle, 0 \leq t \leq 1$, and $\mathbf{F}(x, y, z)=\left\langle x, z^{2},-4 y\right\rangle$.
Problem 13. Let $f(x, y)=3 x+x^{2} y-y x^{2}$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\nabla f$ and C is the curve given by $\mathbf{r}(t)=\left\langle 2 t, t^{2}\right\rangle, 1 \leq t \leq 2$.

Problem 14. (a) Is $\mathbf{F}(x, y)=\left\langle 3 x^{2}-4 y, 4 y^{2}-2 x\right\rangle$ a conservative vector field? If so, find a function f so that $\mathbf{F}=\nabla f$.
(b) Is $\mathbf{F}(x, y)=\langle 2 x+4 y, 4 x-1\rangle$ a conservative vector field? If so, find a potential function for F.

Problem 15. Given $\mathbf{F}(x, y)=\left\langle 2 x y^{3}, 3 x^{2} y^{2}\right\rangle$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve given by $\mathbf{r}(t)=\left\langle t^{3}+2 t^{2}-t, 3 t^{4}-t^{2}\right\rangle, 0 \leq t \leq 2$.

Problem 16. Given that $\mathbf{F}=\left\langle 4 x e^{z}, \cos (y), 2 x^{2} e^{z}\right\rangle$ is conservative and $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$, compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $0 \leq t \leq \frac{\pi}{2}$. Note: We had to tell you \mathbf{F} is conservative since we have not yet learned the testing criteria for conservativness in \mathbb{R}^{3}.

