## NOTE #8: SECTIONS 16.1-16.3

**Problem 1.** Match the vector fields F with the plots labeled I-IV. Give reasons for your choices. (a)  $\mathbf{F}(x,y) = \langle x, -y \rangle$  (b)  $\mathbf{F}(x,y) = \langle y, x - y \rangle$  (c)  $\mathbf{F}(x,y) = \langle y, y + 2 \rangle$ (d)  $\mathbf{F}(x,y) = \langle \cos(x+y), x \rangle$ 



**Problem 2.** Evaluate  $\int_C xy^2 ds$ , where C is the right half of the circle  $x^2 + y^2 = 9$ , oriented counterclockwise.

**Problem 3.** Evaluate  $\int_C 2y ds$ , where C is the arc of the curve  $x = y^2$  from (1, -1) to (4, 2). **Problem 4.** Evaluate  $\int_C (x^2 + y) ds$  where C consists of the line segment from the point (1, 4) to (3, -1).

**Problem 5.** Evaluate  $\int_C xyzds$ , where C is the line segment from the point (-2, 0, 3) to (0, 1, 2). **Problem 6.** Evaluate  $\int_C ydx + x^2dy$ , where C is described by  $\mathbf{r}(t) = \langle 3e^t, e^{2t} \rangle, 0 \le t \le 1$ . **Problem 7.** Evaluate  $\int_C xdx + ydy$ , where C is the arc of the parabola  $x = 4 - y^2$  from (-5, -3) to (3, 1).

**Problem 8.** Evaluate  $\int_C (x+y)dz + (y-x)dy + zdx$  where  $C: x = t^4, y = t^3, z = t^2, 0 \le t \le 1$ .

**Problem 9.** Evaluate  $\int_C xydx + x^2dy + zdz$  where C is the line segment from (0, -1, 1) to (2, 3, -1).

**Problem 10.** Find the work done by the force field  $\mathbf{F}(x, y) = \langle x^2, xy \rangle$  in moving an object counterclockwise around the right half of the circle  $x^2 + y^2 = 9$ .

**Problem 11.** Suppose we are moving a particle from the point (0,0) to the point (2,4) in a force field  $\mathbf{F}(x,y) = \langle y^2, x \rangle$ . Find  $\int_{\mathcal{T}} \mathbf{F} \cdot d\mathbf{r}$  where:

- (a) The particle travels along the line segment from (0,0) to (2,4).
- (b) The particle travels along the curve  $y = x^2$  from (0,0) to (2,4).

**Problem 12.** Find  $\int_C \mathbf{F} \cdot d\mathbf{r}$ ,  $C : \mathbf{r}(\mathbf{t}) = \langle t, t^2, t^4 \rangle$ ,  $0 \le t \le 1$ , and  $\mathbf{F}(x, y, z) = \langle x, z^2, -4y \rangle$ .

**Problem 13.** Let  $f(x, y) = 3x + x^2y - yx^2$ . Evaluate  $\int_C \mathbf{F} \cdot d\mathbf{r}$  where  $\mathbf{F} = \nabla f$  and C is the curve given by  $\mathbf{r}(t) = \langle 2t, t^2 \rangle, 1 \le t \le 2$ .

**Problem 14.** (a) Is  $\mathbf{F}(x, y) = \langle 3x^2 - 4y, 4y^2 - 2x \rangle$  a conservative vector field? If so, find a function f so that  $\mathbf{F} = \nabla f$ .

(b) Is  $\mathbf{F}(x,y) = \langle 2x + 4y, 4x - 1 \rangle$  a conservative vector field? If so, find a potential function for **F**.

**Problem 15.** Given  $\mathbf{F}(x, y) = \langle 2xy^3, 3x^2y^2 \rangle$ . Evaluate  $\int_C \mathbf{F} \cdot d\mathbf{r}$  where *C* is the curve given by  $\mathbf{r}(t) = \langle t^3 + 2t^2 - t, 3t^4 - t^2 \rangle, 0 \le t \le 2$ .

**Problem 16.** Given that  $\mathbf{F} = \langle 4xe^z, \cos(y), 2x^2e^z \rangle$  is conservative and  $\mathbf{r}(t) = \langle \sin(t), t, \cos(t) \rangle$ , compute  $\int_C \mathbf{F} \cdot d\mathbf{r}$  for  $0 \le t \le \frac{\pi}{2}$ . Note: We had to tell you  $\mathbf{F}$  is conservative since we have not yet learned the testing criteria for conservativness in  $\mathbb{R}^3$ .