Note $\sharp 4$: Exam 02 Review
Problem 1. Find and sketch the domain of the function $f(x, y)=\frac{1}{\sqrt{9-x^{2}-y^{2}}}+\sqrt{x+y}$.

Problem 2. Find the directional derivative of $f(x, y, z)=x y e^{z}$ at the point $P(2,4,0)$ in the direction of $Q(3,2,1)$.

$$
\begin{aligned}
\nabla f & =\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
& =\left.\left\langle y e^{z}, x e^{z}, x y e^{z}\right\rangle\right|_{(2,4,0)} \\
& =\langle 4,2,8\rangle \\
\vec{u} & =\frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}=\frac{\langle 3-2,2-4,1-0\rangle}{\sqrt{1^{2}+(-2)^{2}+1^{2}}}=\frac{\langle 1,-2,1\rangle}{\sqrt{6}}
\end{aligned}
$$

$$
D_{\vec{u}} f=\nabla f \cdot \vec{u}=\frac{4 \cdot 1+2 \cdot(-2)+8 \cdot 1}{\sqrt{6}}=\frac{8}{\sqrt{6}} \text {. rate of change of } f
$$

Problem 3. Consider the function $f(x, y, z)=x^{2}-2 y^{2}+3 z^{2}+x y$ and a point $P(2,-2,1)$. Find the maximum rate of change of f at the point $\overline{P \text { and the direction in which it occurs. }}$

$$
\begin{aligned}
\nabla f & =\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left.\langle 2 x+y,-4 y+x, 6 z\rangle\right|_{(2,-2,1)} \max :\|\vec{u} f=\nabla f \cdot \vec{u}=\| \nabla f\| \| \vec{\pi} \| \cos \theta^{\min _{\vec{\prime}}:-\|\nabla f\| \text { when } \theta=0 \Rightarrow \vec{u} \| \nabla f} \begin{aligned}
& \text { direction } \theta=\pi \Rightarrow \vec{u} \|-\nabla f
\end{aligned} \\
& \|\nabla f\|
\end{aligned}
$$

Problem 4. Find an equation of the tangent plane to the given surface at the specified point.

$$
\begin{aligned}
& f(x) \Rightarrow f^{\prime}(x) \\
& f(x, y) \Rightarrow f_{x} \text { or } \frac{\partial f}{\partial x}
\end{aligned}
$$

$$
z-0=(-1)(x+1)+(-1)(y-1)
$$

$$
=\sin (0)+(-1) \cos (0)=-1
$$

$$
f_{y}=\left.x \cos (x+y)\right|_{(-1,1,0)}=-1 \cos (0)=-1, \quad \hbar(x, y, z)=k
$$

$$
\Leftrightarrow z=-(x+1)-(y-1)
$$

Problem 5. Use the linear approximation(or differentials) of the function $f(x, y)=1-x y \cos (\pi y)$ to approximate $f(1.03,0.98)$.

Problem 6. Describe the level curves for
(1) $f(x, y)=3 x-y=k$ - level curves ore paralld lines.

$$
y=3 x-k
$$

(2) $f(x, y)=\sqrt{x^{2}+2 y^{2}}=k$
$x^{2}+2 y^{2}=k^{2}$ level curves are concentric ellipses

$$
\begin{aligned}
& f(1.03,0.98) \approx f(1,1)+f_{x}(1,1) d x+f_{y}(1,1) d y \quad f(x, y) \approx f\left(x_{0}, y_{0}\right)+d z \\
& f(1,1)=1-\cos (\pi)=1-(-1)=2 \\
& =f\left(x_{,}, y_{0}\right)+f_{x}\left(x_{1}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y \\
& f_{x}=-\left.y \cos (\pi y)\right|_{y=1}=-\cos (\pi)=1 \\
& f_{y}=-\left.x(\cos (\pi y)+y(-\sin (\pi y)(\pi)))\right|_{x=y=1}=-\cos (\pi)+\pi \sin (\pi)=1 \\
& d x=1.03-1=0.03 \\
& d y=0.98-1=-0.02 \\
& f(1.03,0.48) \approx 2+0.03-0.02=2.01 \\
& (x y \cos (\pi y))_{x}=(x)_{x} y \cos (\pi y) \\
& +x(\operatorname{yc}(\alpha) 14) x_{x}
\end{aligned}
$$

Problem 7. The base radius and height of a circular cylinder are measured as 2 cm and 5 cm , respectively, with possible errors in measurements of as much as 0.1 cm and 0.2 cm , respectively. Use the differentials to estimate the maximum error in the calculated volume of the cylinder:

$$
\begin{aligned}
V & =\pi r^{2} h \\
d V & =V_{r} d r+V_{h} d h \quad d V= \\
& =2 \pi r h \cdot d r+\pi r^{2} d h \quad \\
& =2 \pi \cdot 2 \cdot 5 \cdot 0.1+\pi \cdot 2^{2} \cdot 0.2 \\
& =2 \pi+0.8 \pi=2.8 \pi\left(\mathrm{~cm}^{3}\right)
\end{aligned}
$$

Problem 8. Find $f_{y x}$ of $f(x, y)\left(y^{2} e^{3 y+\ln (y)+e^{y^{2}}}\right.$

$$
f_{y x}=f_{x y} \quad \begin{aligned}
f_{x} & =-\sin \left(x^{2} y\right) \cdot 2 x y+0=-2 x y \sin \left(x^{2} y\right) \\
f_{x y} & =-2 x \sin \left(x^{2} y\right)+(-2 x) y \cos \left(x^{2} y\right) \cdot x^{2} \\
& =-2 x \sin \left(x^{2} y\right)-2 x^{3} y \cos \left(x^{2} y\right)
\end{aligned}
$$

Problem 9. Use the chain rule to calculate $\frac{\partial z}{\partial s}$ when $(s, t)=(1,2)$,

$$
\begin{cases}z=x e^{x y}, x=s t-1, y=s^{2}+t \Rightarrow & x=1 \cdot 2-1=1 \\
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s} & y=1^{2}+2=3 \\
\left\{\begin{array}{l}
\frac{\partial z}{\partial x}=e^{x y}+x y e^{x y}=e^{3}+3 e^{3}=4 e^{3} \\
\frac{\partial z}{\partial y}=x^{2} e^{x y}=e^{3} \\
\frac{\partial x}{\partial s}=\left.t\right|_{t=2}=2 \\
\frac{\partial y}{\partial s}=\left.2 s\right|_{s=1}=2 \\
\frac{\partial z}{\partial s}=4 e^{3} \cdot 2+e^{3} \cdot 2=10 e^{3}
\end{array}\right.\end{cases}
$$

Problem 10. The length x, width y and height \approx of a box change with time. At a certain instant, the dimensions are $x=2 m, y=3 \mathrm{~m}$, and $z=4 \mathrm{~m}$, and x, y are increasing at rates $5 \mathrm{~m} / \mathrm{s}, 2 \mathrm{~m} / \mathrm{s}$ respectively, while z is decreasing at a rate of $1 \mathrm{~m} / \mathrm{s}$. At that same instant, find the rate at which the length of a diagonal is changing.

$\frac{d D}{d t}=\left(\frac{\partial D}{\partial x} \cdot \frac{d x}{2}+\left(\frac{\partial D}{2 y} \cdot \frac{d y}{d t}+\frac{2 D}{2 z} \cdot \frac{d z}{d t}\right.\right.$
$\left(\begin{array}{l}\frac{\partial D}{\partial x}=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}} \cdot 2 x=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{D}=\frac{2}{\sqrt{29}} \\ \frac{\partial D}{2 y}=\frac{4}{D}=\frac{3}{\sqrt{29}} \\ \frac{\partial D}{2}=\frac{z}{D}=\frac{4}{20}\end{array}\right.$

$$
\frac{d D}{d t}=\frac{2 \cdot 5+3 \cdot 2+4 \cdot(-1)}{\sqrt{20}}=\sqrt{\frac{1}{\sqrt{29}}(\mathrm{~m} / \mathrm{s})}
$$

Problem 11. Consider the surface

$$
\begin{array}{ll}
2(x-1)^{2}+3(y-3)^{2}-(z-2)^{2}=2, \quad z \geq 0 \\
\text { Face determined by }(x, y)=(3,2) . & \Rightarrow F_{x}\left(x-F_{0}+F_{y}\left(y-y_{0}\right)+F_{F_{z}}\left(z-z_{0}\right)=0\right.
\end{array}
$$ at the point P on the surface determined by $(x, y) \stackrel{k}{=}(3,2)$.

(1) Find the equation of the tangent plane in the form of a linear equation $(a x+b y+c z+d=0)$.

normal
line
(2) Find the equation of the normal line in the form of parametric equations.

$$
x=3+8 t, \quad y=2-6 t, \quad z=5-6 t
$$

$$
\nabla f=\overrightarrow{0} \Leftrightarrow f_{x}=0, f_{y}=0
$$

Problem 12. Find all critical points and classify them as local maximum, local minimum, or saddle point. You don't have to find the values of f.

$$
f(x, y)=\frac{2}{3} x^{3}+x y^{2}+3 x^{2}+2 y^{2}
$$

(1) critical pts:

$$
\left\{\begin{array}{l}
f_{x}=2 x^{2}+y^{2}+6 x=0 \cdots \text { a } \\
f_{y}=2 x y+4 y=0 \cdots(b) \Leftrightarrow 2 y(x+2)=0 \Leftrightarrow y=0 \text { or } x=-2
\end{array}\right.
$$

- $y=0$: plugging $y=0$ in (1), $2 x^{2}+6 x=2 x(x+3)=0 \Leftrightarrow x=0,-3$

$$
x=-2 \text { : " } x=-2 \text { in @, } \quad 8+y^{2}-12=0 \Leftrightarrow y^{2}=4 \Leftrightarrow y= \pm 2
$$

critical pts: $(0,0),(-3,0),(-2,2),(-2,-2)$
(2) Second derivative test:

$$
D=f_{x x} f_{y y}-f_{x y}^{2}
$$

$$
\left.\begin{array}{l}
f_{x x}=4 x+6 \\
f_{x y}=2 y \\
f_{y y}=2 x+4
\end{array}\right\} \quad D=(4 x+6)(2 x+4)-(2 y)^{2}
$$

$D<0 \Rightarrow$ saddle

$$
\begin{aligned}
D>0 \Rightarrow & f_{x x}>0 \text { local min } \\
& f_{x x}<0 \text { local max }
\end{aligned}
$$

$$
\text { -(0,0): } D=6.4>0 \quad f_{x x}=6>0
$$

$$
\Rightarrow \text { local min }
$$

- $(-3,0): D=(-6)(-2)-0=12>0$ $f_{x x}=-6<0$
\Rightarrow local max

$$
\cdot(-2, \pm 2): D=(-2)(0)-16=-18<0
$$

\Rightarrow Saddle pts

Problem 13. Let $f(x, y)=x^{2}+2 y^{2}-2 x-4 y+1$. Find the absolute maximum and minimum over the triangle with vertices $(0,0),(2,0)$, and $(2,4)$.

(1) Find all the critical pts in D and evaluate f
(2) Find the max/min on the boundary of D
(3) Compare the results of (1) and (2) and find the \max / min.
(1)

$$
\left.\begin{array}{l}
f_{x}=2 x-2=0 \Leftrightarrow x=1 \\
f_{y}=4 y-4=0 \Leftrightarrow y=1
\end{array}\right\} \Rightarrow(1,1) \Rightarrow f(1,1)=1+2-2-4+1=-2
$$

(2) (a): $y=0,0 \leq x \leqslant 2 \Rightarrow f(x, 0)=x^{2}-2 x+1 \quad f^{\prime}(x, 0)=2 x-2=0 \Leftrightarrow x=1 \Rightarrow f(1,0)=1-2+1$ $=0$

$$
f(0,0)=1 \quad f(2,0)=2^{2}-2 \cdot 2+1=1
$$

(b)

$$
\begin{gathered}
x=2, \quad 0 \leq y \leq 4 \Rightarrow f(2, y)=2^{2}+2 y^{2}-2 \cdot 2-4 y+1=2 y^{2}-4 y+1 \\
f^{\prime}=4 y-4=0 \Leftrightarrow y=1 \quad f(2,1)=2 \cdot 1-4 \cdot 1+1=-1 \\
f(2,4)=2 \cdot 4^{2}-4 \cdot 4+1=32-16+1=17
\end{gathered}
$$

(C)

$$
\begin{aligned}
& y=2 x, \quad 0 \leqslant x \leqslant 2 \quad f(x, 2 x)=x^{2}+2(2 x)^{2}-2 x-4(2 x)+1 \\
&=x^{2}+8 x^{2}-2 x-8 x+1 \\
&=9 x^{2}-10 x+1 \\
& f^{\prime}=18 x-10=0 \Leftrightarrow x=\frac{10}{18}=\left.\frac{5}{9} \quad f\right|_{\frac{5}{9}}=9 \cdot\left(\frac{5}{9}\right)^{2}-10 \cdot\left(\frac{5}{9}\right)+1=\frac{25}{9}-\frac{50}{7}+1 \\
&=-\frac{16}{9}
\end{aligned}
$$

(3) By comparing found values, the max is 11 , the min is -2

Problem 14. Find the absolute maximum and minimum values of f on the region described by the inequality. Use the Lagrange multiplier method.

$$
\begin{array}{ll}
f(x, y)=2 x^{2}+3 y^{2}, & 3 x^{2}+y^{2} \leq 12 \\
& 3 x^{2}+y^{2}=12 \\
& y=0: \quad 3 x^{2}=12 \quad x= \pm 2 \\
& x=0: \quad y^{2}=12 \quad y= \pm \sqrt{12}
\end{array}
$$

(1)

$$
\left.\begin{array}{l}
f_{x}=4 x=0 \\
f_{y}=6 y=0
\end{array}\right\} \Leftrightarrow(0,0) \quad f(0,0)=2 \cdot 0^{2}+3 \cdot 0^{2}=0
$$

(2) Find the maximin on the boundary using the Lagrange multiplier method.

$$
\begin{align*}
& f(x, y)=2 x^{2}+3 y^{2} \quad g(x, y)=3 x^{2}+y^{2}=12 \\
& \left\{\begin{array} { l }
{ \nabla f = \lambda \nabla g } \\
{ g = k }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ f _ { x } = \lambda g _ { x } } \\
{ f _ { y } = \lambda y _ { y } } \\
{ g = k }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
4 x=\lambda(6 x) \cdots \\
6 y=\lambda(2 y) \cdots \\
3 x^{2}+y^{2}=12
\end{array}\right.\right.\right. \tag{a}
\end{align*}
$$

From (6) $\Leftrightarrow 0=2 y(\lambda-3) \Leftrightarrow y=0$ or $\lambda=3$
i) $y=0$: Plugging in (c), $3 x^{2}=12 \Leftrightarrow x= \pm 2 \quad f(\pm 2,0)=2 \cdot(\pm 2)^{2}+0=8$
ii) $\lambda=3$: Plugging in @, $4 x=3(6 x)=18 x \Leftrightarrow 0=14 x \Leftrightarrow x=0$ Plugging in (c),

$$
y^{2}=12 \Leftrightarrow y= \pm \sqrt{12} \Rightarrow f(0, \pm \sqrt{12})=0+3 \cdot 12=36
$$

(3) By comparison, the max is 36
the min is 0

Problem 15. (a) Find $d y / d x$.

$$
\begin{gathered}
y \cos (x y)=e^{x y} \\
\frac{\Leftrightarrow y \cos \left(x(y)-e^{x y}\right.}{F(x, y)}=0 \\
F_{x}=y(-\sin (x y)) y-y e^{x y} \\
F_{y}=\cos (x y)+y(-\sin (x y) \cdot x)-x e^{x y} \\
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}=\frac{y^{2} \sin (x y)-y e^{x y}}{\cos (x y)-x y \sin (x y)-x e^{x y}}
\end{gathered}
$$

(b) Find $\partial z / \partial x$ and $\partial z / \partial y$.

$$
\sin (x y z)=e^{x y z}
$$

$$
\Leftrightarrow \sin (x y z)-e^{x y z}=0
$$

$$
F(x, y, z)
$$

$$
\begin{aligned}
& F_{x}=\cos (x y z) \cdot y z-e^{x y z} \cdot y z \\
& F_{y}=\cos (x y z) \cdot x z-e^{x y z} \cdot x z \\
& F_{z}=\cos (x y z) \cdot x y-e^{x y z} \cdot x y
\end{aligned}
$$

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
$$

$$
\frac{d}{d x} F(x, y)=\frac{d}{d x}=0
$$

$$
\begin{aligned}
& \frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}\left(\frac{d y}{d x}\right)=0 \\
& \frac{d y}{d x}=-\frac{\partial F^{2} / \partial x}{\partial F^{\prime} / \partial y} \\
&=-\frac{F_{x}}{F_{y}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial}{\partial x} F(x, y, z)=\frac{\partial}{\partial x}=0 \\
z=z(x, y)
\end{gathered}
$$

(x)

$$
\begin{aligned}
& F_{x}+F_{z} \cdot \frac{\partial z}{\partial x}=0 \\
& \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
\end{aligned}
$$

