Week-in-Review 1 (1.1, 1.2)

Problem 1. Find the following limits, if they exist, based on the graph of $f(x)$ below:

(1) $\lim _{x \rightarrow-6} f(x)$
(2) $\lim _{x \rightarrow-5} f(x)$
(3) $\lim _{x \rightarrow-2} f(x)$
(4) $\lim _{x \rightarrow-1} f(x)$
(5) $\lim _{x \rightarrow 0} f(x)$
(6) $\lim _{x \rightarrow 4} f(x)$
(7) $\lim _{x \rightarrow 7} f(x)$
(8) Find $f(-5), f(-2), f(-1), f(0), f(4)$.

Problem 2. Find the following limits numerically. If a limit does not exist, state this and use the limit notation to describe any infinite behavior.
(1) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
(2) $\lim _{x \rightarrow 5} \frac{5}{x-5}$

Problem 3. Find $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$ algebraically.

Problem 4. Find the following limits, if they exist, based on the graph of $f(x)$ and $g(x)$ below:

(1) $\lim _{x \rightarrow 1}[f(x)+g(x)]=$
(2) $\lim _{x \rightarrow 2}[f(x) g(x)]=$
(3) $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=$
(4) $\lim _{x \rightarrow-3}\left[x^{2} g(x)\right]=$
(5) $\lim _{x \rightarrow-1} \sqrt{2 f(x)+4 g(x)}=$

Problem 5. Find the following limits algebraically. If a limit does not exist, state this and use the limit notation to describe any infinite behavior.
(1) $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+5}{x-3}$
(2) $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1}$
(3) $\lim _{x \rightarrow 0} \frac{1}{x}$
(4) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$

Problem 6. Find $\lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x^{2}-16}$ algebraically. If the limit does not exist, state this and use the limit notation to describe any infinite behavior.

Problem 7. Find $\lim _{x \rightarrow 5} \frac{\frac{1}{5}-\frac{1}{x}}{5-x}$ algebraically. If the limit does not exist, state this and use the limit notation to describe any infinite behavior.

Problem 8. Find $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}$ algebraically. If the limit does not exist, state this and use the limit notation to describe any infinite behavior.

Problem 9. Find $\lim _{x \rightarrow 3} \frac{|x-3|}{6-2 x}$ algebraically. If the limit does not exist, state this and use the limit notation to describe any infinite behavior.

Problem 10. Consider the piecewise function $f(x)$ given below, and answer the questions.

$$
f(x)=\left\{\begin{array}{cc}
10 x-4 x^{2} & x<-2 \\
\frac{x+1}{x^{2}-x-2} & -2<x \leq 3 \\
\frac{x^{2}-8}{2^{3-x}} & x>3
\end{array}\right.
$$

(1) $f(-2)=$
(2) $\lim _{x \rightarrow-2^{-}} f(x)=$
(3) $\lim _{x \rightarrow-2^{+}} f(x)=$
(4) $\lim _{x \rightarrow-2} f(x)=$
(5) $\lim _{x \rightarrow 0} f(x)=$
(6) $f(3)=$
(7) $\lim _{x \rightarrow 3^{-}} f(x)=$
(8) $\lim _{x \rightarrow 3^{+}} f(x)=$
(9) $\lim _{x \rightarrow 3} f(x)=$
(10) $\lim _{x \rightarrow-1} f(x)=$
(11) $\lim _{x \rightarrow 2} f(x)=$
(12) $\lim _{x \rightarrow 4} f(x)=$

