Math 150 - Week-In-Review 3
 Sana Kazemi

Problem Statements

1. Write the given functions in standard form. Then determine the vertex, whether the vertex is a maximum or minimum, and the axis of symmetry.
a) $g(x)=-3 x^{2}-18 x-2$
leading term $-3 x^{2} \Rightarrow \Omega \Rightarrow$ vertex is maximum
vertex $\left(-\frac{b}{2 a}, g\left(\frac{-b}{2 a}\right)\right)$

$$
\begin{array}{lr}
-\frac{b}{2 a}=\frac{-(-18)}{2(-3)}=\frac{18}{2 x-3}=\frac{9}{-3}=-3 & \text { vertex }(-3,25) \\
g(-3)=-27+54-2=25 & \text { axis of symmetry } x=-2 \\
=4 x^{2}+2 x+9 & y=-3(x+3)^{2}+25
\end{array}
$$

b) $f(x)=4 x^{2}+2 x+9$
leading term $4 x^{2} \vartheta \vartheta \Rightarrow$ vertex is Min

$$
\begin{aligned}
\frac{-b}{2 a}=\frac{-(2)}{2(4)}=-\frac{1}{4} & \text { Vertex }\left(-\frac{1}{4}, \frac{35}{4}\right) \\
f\left(\frac{-1}{4}\right)=4\left(\frac{-1}{4}\right)^{2}+2\left(-\frac{1}{4}\right)+9=\frac{35}{4} & \text { axis of sym. } x=-\frac{1}{4} \\
y=4\left(x+\frac{1}{4}\right)^{2}+\frac{35}{4} &
\end{aligned}
$$

2. Find the x-intercepts of the following functions.
a) $h(x)=\frac{1}{3} x^{2}-4 x+3=0$
$\times 3 \longrightarrow x^{2}-12 x+9=0$

$$
\begin{aligned}
& x^{2}-12 x+\left(\frac{-12}{2}\right)^{2}-\left(\frac{-12}{2}\right)^{2}+9=0 \\
& x^{2}-12 x+(-6)^{2}-36+9=0
\end{aligned}
$$

$$
\begin{aligned}
& (x-6)^{2}-27=0 \rightarrow \quad(x-6)^{2}=27 \\
& x-6= \pm \sqrt{27} \longrightarrow x=6 \pm \sqrt{27}
\end{aligned}
$$

b) $f(x)=2 x^{\frac{5}{2}}-x^{\frac{3}{2}}-x^{\frac{1}{2}}$

$$
x=1 \text { \& } x=-\frac{1}{2} \quad X \text { extraneous solution }
$$

we cant have negative
under even roots.
3. A farmer decides to enclose a rectangular stall against a river so his horses have water access. The figure below shows the shape he wants to make. If he has 1800 feet of fencing, what values for x and y will maximize the enclosed area with no fencing against the river? What is the maximum area he can enclose?

$$
f=x\left(\frac{-1}{2} x+900\right)=\underbrace{-\frac{1}{2}}_{a} x^{2}+\underbrace{900 x}_{b}
$$

* vertex $\left(\frac{-900}{2\left(-\frac{1}{2}\right)}, A(900)\right)=(900,450)$

Max area: $x \times y=405000$

TEXAS A\&M UNIVERSITY
Mathematics

Exam 1 Review

1. For the given polynomial functions, determine the end behavior of the graph.
a) $f(x)=3 x^{8}+7 x^{5}+12$

b) $g(x)=-4 x^{9}-3 x^{5}+8$

2. Determine the quotient with fractional remainder (if necessary) of the following.
(a) $\left(7 x^{3}-46 x^{2}-14 x+3\right) \div(7 x+3)=x^{2}-7 x+1$

$$
\begin{array}{r}
7 x+3 \begin{array}{l}
\frac{x^{2}-7 x+1}{7 x^{3}-46 x^{2}-14 x+3} \\
-7 x^{3}+3 x^{2} \downarrow \downarrow \\
-49 x^{2}-14 x+3 \\
-49 x^{2}-21 x
\end{array} \\
\frac{7 x+3}{0}
\end{array}
$$

(b) $\left(3 x^{3}-2 x^{2}+4 x-9\right) \div(x+1)=3 x^{2}-5 x+9-\frac{18}{x+1}$

$$
x+1 \quad \begin{array}{r}
3 x^{2}-5 x+9 \\
\begin{array}{l}
3 x^{3}-2 x^{2}+4 x-9 \\
3 x^{3}+3 x^{2} \downarrow \downarrow \\
-5 x^{2}+4 x-9
\end{array} \\
-\begin{array}{r}
-5 x^{2}-5 x
\end{array} \\
-\frac{9 x-9}{-18}
\end{array}
$$

3. Find the zeros and their multiplicities for the following functions, then determine the end behavior and maximum number of turning points. Roughly sketch the graph.
a) $k(x)=2 x^{3}-3 x^{2}-9 x$

$$
\begin{aligned}
& \quad \underset{(2 x+3)(x-3)}{x}\left(2 x^{2}-3 x-9\right) \\
& \left.x=0, \frac{-3}{2}, 3 \quad \text { (all odd multiplicity } \Rightarrow \text { passing through graph }\right)
\end{aligned}
$$

leading term $\underset{2 x^{3}}{\stackrel{\wedge}{2}}$

b) $g(x)=\underbrace{-x^{4}}_{\sim}+8 x^{2}-16$
x-int: let $t=x^{2}$
$g(x)=-t^{2}+8 t-16$
$-(\underbrace{t^{2}-8 t+16})=0$
$(t-4)^{2} \Rightarrow t=4 \stackrel{t}{\text { with even }} \xlongequal{t=x^{2}} \Rightarrow x^{2}=4 \Rightarrow x= \pm 2 \quad \begin{gathered}\text { w/ EVer } \\ \text { multiplicity }\end{gathered} \Rightarrow$ Touch x-ai sh multiplicity y _int: $\quad(0,-16)$

4. Let L_{1} be the line passing through the points $(2,-1)$ and $(1,5)$, and L_{2} be the line passing through the points $(1,4)$ and $(9,8)$. Determine whether the lines are parallel, perpendicular, or neither.
$L_{1}:$

$$
\begin{aligned}
& m_{L_{1}}=\frac{5-(-1)}{1-2}=\frac{6}{-1}=-6 \\
& m_{L_{2}}=\frac{8-4}{9-1}=\frac{4}{8}=\frac{1}{2}
\end{aligned}
$$

Neither
5. Solve the inequality $|9-2 x|-2>-1$.

$$
\begin{aligned}
& |9-2 x|>-1+2 \\
& |9-2 x|>1 \Longleftrightarrow 9-2 x>1 \text { or } 9-2 x<-1 \\
& -2 x>1-9 \quad-2 x<-1-9 \\
& -2 x>-8 \\
& x<4 \text { or } \quad x>5
\end{aligned}
$$

6. Solve the quadratic equation $12 x^{2}+12 x=3$ by completing the square.

$$
\begin{aligned}
& 12 x^{2}+12 x-3=0 \\
& 12\left(x^{2}+x-\frac{\not x}{x 24}\right)=0 \\
& 12\left(x^{2}+x-\frac{1}{4}\right)=0 \rightarrow x^{2}+x-\frac{1}{4}=0
\end{aligned} \frac{x^{2}+x+\frac{1}{4}-\frac{1}{4}-\frac{1}{4}=0}{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{2}=0} \begin{aligned}
& \left(x+\frac{1}{2}\right)^{2}=\frac{1}{2} \\
& \\
& x=-\frac{1}{2} \pm \frac{\sqrt{2}}{2}= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

7. Solve the equation. Check for extraneous solutions.

$$
\begin{aligned}
& \frac{12}{x^{2}+2 x-3}=\frac{3}{x-1}+\frac{7}{x+3} \rightarrow \text { from denominators } \begin{array}{l}
x \neq 1 \\
x \neq-3
\end{array} \\
& \frac{12}{x^{2}+2 x-3}=\frac{3(x+3)+7(x-1)}{(x-1)(x+3)} \\
& \Rightarrow \frac{12}{x^{2}+2 x-3}=\frac{3 x+9+7 x-7}{x^{2}+2 x-3} \\
& \Rightarrow \quad 12=10 x+2 \quad 10 x=10 \\
& \begin{aligned}
x=1
\end{aligned} \Rightarrow \text { not in domain of our equation }
\end{aligned}
$$

8. Given $f(x)=\sqrt{2 x+1}, g(x)=\frac{1}{x}$, find $(f \circ g)(x)$ and $(g \circ f)(x)$ and their domains.

$$
2 x+1 \geqslant 0 \quad{ }_{x}^{2} \geqslant-\frac{1}{2} \quad \operatorname{Dom}(g)=(-\infty, 0) \cup(0, \infty)
$$

$$
\operatorname{Dom} f=\left[-\frac{1}{2}, \infty\right)
$$

$$
f \circ g(x)=\sqrt{2(g(x))+1}=\sqrt{\frac{2}{x}+1}=\sqrt{\frac{2+x}{x}} \quad \overbrace{{\underset{x}{x=0}}_{x+x}^{x}}^{x=-2} \geqslant 0
$$

$$
\operatorname{Dom}(\text { bog })=(-\infty,-2] \cup(0, \infty)
$$

$$
g \circ f(x)=\frac{1}{f(x)}=\frac{1}{\sqrt{2 x+1}} \quad \operatorname{Dom}(g \circ f)=\left(-\frac{1}{2}, \infty\right)
$$

9. Find the intervals where the following inequality is true.

$$
\frac{(11-x)^{6}\left(2 x^{2}+5 x-3\right)}{x+1} \geq 0
$$

Note: $(11-x)^{6}$ is always positive because of the even power.
So the equation $x+1 \& 2 x^{2}+5 x-3$ are the ones that could possibly change thee sign.

$$
\frac{ \pm}{+} \text { or } \frac{-}{-}
$$

Find critical points $\begin{aligned} x 4^{1}=0 \\ x=-1\end{aligned} \& 2 x^{2}+5 x-3=0 \quad(x+3)\left(x-\frac{1}{2}\right)=0$

10. Antoine stands on a balcony and throws a ball to his dog, who is at ground level. The ball's height (in feet above the ground), t seconds after Antoine threw it, is modeled by $h(t)=-2 t^{2}+4 t+16$ a) What is the height of the ball at the time it is thrown? What is the maximum height of the ball? $\downarrow \downarrow$ c) When does the ball reach it's maximum height?

a) if $t=a \rightarrow h(0)=16 \mathrm{ft}$.
b) (vertex $\left.x=\frac{-b}{2 a}\right) \quad t=\frac{-4}{-4}=+1 \Rightarrow h(1)=18^{f t}$ wax height of
c) $r t=1$
11. Find the quadratic with axis of symmetry $x=2$, a zero at $(3,0)$, and a y-intercept of $(0,16)$.

$$
y=a(x-h)^{2}+k
$$ with (h, k) vertex

\qquad

$$
16=a(0-2)^{2}+k
$$

$$
0=a(3-2)^{2}+k
$$

$$
16=4 a+k
$$

$$
0=a+k
$$

$$
\left\{\begin{array}{l}
a+k=0 \longrightarrow a=-k \\
4 a+k=16
\end{array} \quad-4 k+k=16 \quad k=\frac{-16}{3} \quad \& \quad a=\frac{16}{3}\right.
$$

12. Consider the function $g(x)=-\frac{1}{3} \sqrt{-x+2}-5$.
a) Identify the parent function f.

$$
f(x)=\sqrt{x}
$$

b) Describe the sequence of transformations from f to g.
(1) $\sqrt{-x}$ reflect over y-axis $\left.\frac{2^{2}}{-4-1}\right|^{2}$
(2) $\sqrt{-(x-2)}$

(3) $\frac{1}{3} \sqrt{-(x-2)}$ vertical shrink 3 units
(4) $-\frac{1}{3} \sqrt{-(x-2)}$ reflect over x-axis $\quad 1:$:-
c) Use function notation to write g in terms of f.

$$
g(x)=-\frac{1}{3} f(-(x-2))-5
$$

d) Sketch the graph of g.

