Math 308: Week-in-Review 4
 Shelvean Kapita

1. Solve the initial value problems
(a)

$$
y^{\prime \prime}-7 y^{\prime}+12 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-2 .
$$

(b)

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=3 .
$$

(c)

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-1 .
$$

2. Find the initial value problems (equations and initial conditions) that have the solutions
(a)

$$
y(t)=2 e^{4 t}+e^{-6 t}
$$

TEXAS A\&M UNIVERSITY
(b)

$$
y(t)=e^{-3 t}+2 t e^{-3 t}
$$

(c)

$$
y(t)=2 e^{-t / 2} \cos (3 t)+e^{-t / 2} \sin (3 t)
$$

3. Verify that $y_{1}=\cos \left(\ln x^{2}\right)$ and $y_{2}=\sin \left(\ln x^{2}\right)$ are solutions of the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y=0 .
$$

Do they constitute a fundamental set?
4. Suppose $y_{1}=t^{-1 / 2}$ is a solution of the differential equation

$$
4 t^{2} y^{\prime \prime}+8 t y^{\prime}+y=0, t>0
$$

Determine a second linearly independent solution y_{2}.
5. If the differential equation

$$
3 t^{2} y^{\prime \prime}-2 t y^{\prime}-5 y=0, t>0
$$

has a fundamental set of solutions y_{1} and y_{2} and $W\left(y_{1}, y_{2}\right)(1)=5$, find the value of $W\left(y_{1}, y_{2}\right)(8)$.
6. Find a general solution of

$$
4 t^{2} y^{\prime \prime}+4 t y^{\prime}+\left(36 t^{2}-1\right) y=0
$$

given that $y=t^{-1 / 2} \cos (3 t)$ is one solution.

