Math 308: Week-in-Review 8

Shelvean Kapita

1. Express $f(t)$ in terms of the unit step function $u_{c}(t)$ and find it's Laplace transform
(a)

$$
f(t)= \begin{cases}(t-2)^{2}, & 0 \leq t<2 \\ e^{t-2}, & t \geq 2\end{cases}
$$

TEXAS A\&M UNIVERSITY
(b)

$$
f(t)= \begin{cases}3, & 0 \leq t<2 \\ 2 t, & 2 \leq t<4, \\ 3 \sin (t-4), & t \geq 4\end{cases}
$$

2. Find the inverse Laplace transform of
(a)

$$
F(s)=\frac{e^{-5 s}}{s\left(s^{4}+4\right)}
$$

(e)

$$
F(s)=\frac{e^{-s}-e^{-4 s}}{s\left(s^{2}+2 s+5\right)}
$$

TEXAS A\&M UNIVERSITY Math Learning Center
3. Solve
(a) $y^{\prime \prime}+y=3 \sin (t) \cdot \delta(t-\pi / 2), \quad y(0)=0, \quad y^{\prime}(0)=-1$.
(b) $y^{\prime \prime}+4 y^{\prime}=f(t), \quad y(0)=y^{\prime}(0)=0$ where $f(t)= \begin{cases}1, & 0 \leq t<1, \\ -1, & 1 \leq t<2, \\ 0, & t \geq 2 .\end{cases}$
4. Let $f(t)=e^{-t}$ and $g(t)=\sin (t)$. Compute $(f * g)(t)$ and $(g * f)(t)$. Verify the Convolution Theorem for these functions.
5. (a) Find the Laplace transform of $h(t)=\int_{0}^{t} e^{t-x} \sin (x) d x$
(b) Find the inverse Laplace transform using the Convolution Theorem

$$
F(s)=\frac{1}{\left(s^{2}+9\right)(s-2)}
$$

6. Use Laplace transforms to solve the integro-differential equation

$$
y^{\prime}-4 y+4 \int_{0}^{t} y(x) d x=t^{3} e^{2 t}
$$

