MATH 308: WEEK-IN-REVIEW 4 SHELVEAN KAPITA

1. Solve the initial value problems

(a)
$$y'' - 7y' + 12y = 0$$
, $y(0) = 3$, $y'(0) = -2$.

* characteristic polynomial: $\lambda^2 - 7\lambda + 12 = 0 \Rightarrow (\lambda - 3)(\lambda - 4) = 0$

y(t) = $c_1 e + c_2 e^4$ (general solution) $\lambda = 3$, ψ two real rook

* tind coefficients $c_1 e c_2 e c_3 e c_4 e c_4 e c_5$ ψ (c) = $3c_1 + 4c_2 = -2$
 $v(0) = c_1 + c_2 = 3$, $v(1) = 3c_1 e + 4c_2 e \Rightarrow v(0) = 3c_1 + 4c_2 = -2$
 $v(1) = 3c_1 + 4(3-c_1) = 3c_1 - 4c_1 + 12 = -2 \Rightarrow c_1 = 14$
 $v(1) = 3e_1 + 4e_2 - 1e_3 = 3e_4 + 4e_4 = -1e_4 = 1e_5$

(b)

(b)
$$y'' + 4y' + 4y = 0, \quad y(0) = 1, \quad y'(0) = 3.$$
** characteristic polynomial: $\lambda^2 + 4\lambda + 4 = 0 \Rightarrow (\lambda + 2)^2 = 0 \Rightarrow \lambda = -\lambda$

$$y(t) = c_1 e + c_2 t e \quad \text{(general solution)}$$
** repeated roof **

$$4$$
 tind coefficients of c_1, c_2 using initial conditions
 $y(0) = c_1 = 1$, $y'(t) = -3c_1e + c_2e - 2c_2te$
 $y'(0) = -2c_1+c_2=3 \Rightarrow c_2=3+2c_1=3+2=5$

(c)
$$y'' + 4y' + 20y = 0$$
, $y(0) = 3$, $y'(0) = -1$. **complex roop*

Y(t) = $C_1 e^{-2t}$ cos $(4t) + C_2 e^{-2t}$ in $(4t)$

**The coefficient C_1, C_2 using initial condition $(4t)$
 $Y(t) = -2c_1 e^{-2t}$ cos $(4t) - 4c_1 e^{-2t}$ cos $(4t)$
 $Y(t) = -2c_1 e^{-2t}$ cos $(4t) + 4c_2 e^{-2t}$ cos $(4t)$
 $Y(t) = -2c_1 e^{-2t}$ cos $(4t) + 4c_2 e^{-2t}$ cos $(4t)$
 $Y(t) = -2c_1 + 4c_2 = -6 + 4c_2 = -1 \Rightarrow 4c_2 = 5 \Rightarrow c_2 = 5$
 $Y(t) = 3e^{-2t}$ cos $(4t) + \frac{5}{4}e^{-2t}$ cos $(4t)$

2. Find the initial value problems (equations and initial conditions) that have the solutions

(b)
$$y(t) = e^{-3t} + 2te^{-3t} \quad \text{x repeated root } \text{x } \text{$\lambda = -3$}$$

$$\text{x characteristic polynomial: } (\text{$\lambda + 3$})^2 = \text{$\lambda^2 + 6\lambda + 9 = 0$}$$

$$\text{x differential equation: } \text{y!} + \text{6y!} + \text{9y=0} \text{2}$$

$$\text{x initial conditions: } \text{y(o)} = \text{1 + 0 = 1}$$

$$\text{y'(t)} = -3e^{3t} + 2e^{-3t} - 6te^{3t}$$

$$\text{y'(o)} = -3 + 2e^{-3t} - 6te^{-3t}$$

y(t) = e + 2 te is the solution of y + 6y + 9y = 0, y(0) = 1, y(0) = -1

(c)
$$y(t) = 2e^{-t/2}\cos(3t) + e^{-t/2}\sin(3t)$$
* characteristic polynomial: $\lambda + a\lambda + b = 0$

$$\lambda = -\frac{1}{2} + \frac{3}{4}i$$

$$\lambda = -\frac{1}{2} + \frac{1}{2} + \frac{3}{4}i$$

$$\lambda = -\frac{1}{2} + \frac{1}{2} + \frac{3}{4}i$$

$$\lambda = -\frac{1}{$$

3. Verify that $y_1 = \cos(\ln x^2)$ and $y_2 = \sin(\ln x^2)$ are solutions of the differential equation

$$x^2y'' + xy' + 4y = 0.$$
 , X >0.

Do they constitute a fundamental set?

$$y = \cos(\ln x^2)$$
, $y'_1 = -\sin(\ln x^2) \cdot \frac{1}{x^2} \cdot 2x = -\frac{2\sin(\ln x^2)}{x}$ * by the chain rule

 $y''_1 = x \cdot \left[-2\cos(\ln x^2) \cdot \frac{1}{x^2} \cdot 2x \right] - \left[-2\sin(\ln x^2) \cdot \frac{1}{x^2} \cdot 2x \right]$

$$= - \frac{4 \cos(\ln x^2) + 2 \sin(\ln x^2)}{x^2}$$

$$x^{2}y_{\perp}^{"} + xy_{\perp}^{'} + 4y_{\perp}^{"} = \left[-4\cos(\ln x^{2}) + 2\sinh(\ln x^{2}) \right] + \left[-2\sin(\ln x^{2}) \right] + 4\cos(\ln x^{2})$$

$$= 0 \quad / \quad * \quad y_{\perp} \text{ is a solution}$$

$$= 0 \quad / \quad * \quad y_{\perp} \text{ is a solution}$$

$$y_2 = \sin(\ln x^2)$$
, $y_2 = \cos(\ln x^2) \cdot \frac{1}{x^2} \cdot 2x = 2\cos(\ln x^2)$

$$y_{\lambda}^{\parallel} = x \cdot \left[-2 \sin \left(\ln x^{2} \right) \cdot \frac{1}{x^{2}} \cdot 2x \right] - 2 \cos \left(\ln x^{2} \right)$$

$$\chi^{2}$$

$$= - \underbrace{4 \operatorname{pin}(\ln x^2) - 2 \cos(\ln x^2)}_{x^2}$$

$$x^{2}y_{2}^{11} + xy_{2}^{1} + 4y_{2} = \left[-4 \sin(\ln x) - 2\cos(\ln x^{2})\right] + 2\cos(\ln x^{2}) + 4 \sin(\ln x^{2})$$

$$= 0 \quad / * y_{2} is a solution$$

* check for linear independence (y, , y, form a fundamental pour?)

$$W(t) = y_1 y_2^1 - y_1' y_2 = \cos(\ln x^2) \left[2 \frac{\cos(\ln x^2)}{x} \right] - \left[-\frac{2 \sin(\ln x^2)}{x} \right] \left(\sin(\ln x^2) \right)$$

=
$$\frac{2}{x} \left[\cos^2(\ln x^2) + \sin^2(\ln x^2) \right] = \frac{2}{x} \neq 0$$
, $x > 0$

Therefore {cos(lux), sin(lux)} is a fundamental pair.

4. Suppose $y_1 = t^{-1/2}$ is a solution of the differential equation

$$4t^2y'' + 8ty' + y = 0, \ t > 0.$$

Determine a second linearly independent solution y_2 .

* Method of reduction of order * Set $y_2 = u(x)t$ Then, $y_{2}^{1} = u^{\frac{1}{2} - \frac{1}{2}ut^{\frac{-3}{2}}}$ (product rule) $-\frac{5}{2}$ $\frac{-5}{2}$ $\frac{1-1h}{2} \frac{1-3h}{4} \frac{-5}{2}$ $\frac{-5}{2}$ $\frac{y_{2}^{11} - y_{2}^{12} - \frac{1}{2}ut^{\frac{-3}{2}} - \frac{1}{2}ut^{\frac{-3}{2}} + \frac{3}{4}ut}{1-\frac{3}{4}ut^{\frac{-3}{2}}} = u^{\frac{1}{2} - \frac{1}{2}ut^{\frac{-3}{2}} + \frac{3}{4}ut^{\frac{-3}{2}}$ $4 \pm y + 8 \pm y + y = 4 \pm 2 \times 1 - \frac{1}{2} - 4 \pm 2 \times 1 - \frac{3}{2} \times 2 = -\frac{5}{2}$ olug y into + 8t. u.t - 8t. 1. -1/2 + ut/2 $= 4 \pm \frac{3h}{u} - 4 \pm \frac{1}{u} + 3 \pm \frac{1}{u} + 8 \pm \frac{1}{u} - 4 \pm \frac{1}{u} + u \pm \frac{1}{u}$ = 4tut 4tu = 0 (since y is a solution) 4 t u" + 4 t u = 0 (solve for u) Set $\omega = u \Rightarrow w = u'' \Rightarrow w' + \frac{1}{t}w = 0$ $\rho(w) = \frac{1}{t} \Rightarrow \mu(w) = e' = e' = t$ tw+w=0 $(t\omega)'=0\Rightarrow t\omega=c\Rightarrow \omega=c/t\Rightarrow u'=c/t\Rightarrow u=c/t$ if c=1, then u = ln(t). Therefore y = tlnt

General solution:
$$(y(t) = c_1 + c_2 ln(t))$$

5. If the differential equation

$$3t^2y'' - 2ty' - 5y = 0, \ t > 0$$

has a fundamental set of solutions y_1 and y_2 and $W(y_1, y_2)(1) = 5$, find the value of $W(y_1, y_2)(8)$.

* rewrite in standard form *
$$y'' - \frac{2}{3t}y' - \frac{5}{3t^2}y = 0$$

$$\rho(t) = -\frac{2}{3t}$$

$$\omega(1) = k = 5$$

$$\omega(t) = 5t$$

$$\omega(8) = 5(8^{1/3}) = 5(3\sqrt{8})^{2}$$

$$= 5(2^{2})$$

$$= 20$$

6. Find a general solution of

$$4t^2y'' + 4ty' + (36t^2 - 1)y = 0$$

given that $y = t^{-1/2}\cos(3t)$ is one solution.

x Set $y_1 = t^{1/2}\cos(3t)$ and use method of reduction of order to find y_2 .

$$y_{a} = u(t) + cos(3t)$$

* We use Sympy to evaluate the condition on u needed to satisfy the differential equation

```
from sympy import *

t = symbols('t')  # declare symbol t

y1 = Function('y1')(t)  # declare function y1

y2 = Function('y2')(t)  # declare function y2

u = Function('u')(t)  # declare function u

y1 = cos(3*t)/sqrt(t)  # define y1

y2 = u*y1  # define y2

Q = 4*t**2*y2.diff(t,2)+4*t*y2.diff(t)+(36*t**2-1)*y2  # plug y2 into equation

simplify(Q)  # simplify expression
```

```
* Sympy output: 4 t^2 y_2'' + 4t t y_2' + (3(t^2 - 1)y_2) = 4 t^{3/2} (-6 u \sin(3t) + u \cos(3t)) = 0

* So lue for u: u'' - 6 \tan(3t) u' = 0, u = u', u' = u''

u'' - 6 \tan(3t) u' = 0, p(t) = -6 \tan(3t)

cos^2(3t) us' - 6 \tan(3t) cos^2(3t) u' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u' = 0

(cos^2(3t) us' - 6 \sin(3t) cos(3t) u' = 0

(cos^2(3t) us' - 6 \sin(3t) cos(3t) u' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \tan(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \tan(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \tan(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \sin(3t) cos(3t) u'' = 0

cos^2(3t) us' - 6 \cos(3t) u'' = 0

cos^2(3t) us
```