Math 308: Week-in-Review 9
 Shelvean Kapita

1. Find the following convolutions using the definition only
(a) $e^{t} * e^{3 t}$
(b) $t * t^{n}$, where $n=0,1,2, \cdots$
2. Using the Laplace transform (instead of the definition) compute the following convolutions
(a) $u_{a}(t) * u_{b}(t)$
(b) $t^{n} * t^{m}$, where $n=0,1,2, \cdots$
3. In each of the following cases find a function (or generalized function) $g(t)$ that satisfies the equality for $t \geq 0$
(a) $t * g(t)=t^{4}$
(b) $1 * 1 * g(t)=t^{2}$
(c) $1 * g(t)=1$

TEXAS A\&M UNIVERSITY
4. Write the inverse Laplace transform in terms of a convolution integral

$$
F(s)=\frac{s}{(s+1)^{2}(s+4)^{3}}
$$

5. Solve the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=g(t), \quad y(0)=1, \quad y^{\prime}(0)=-3 .
$$

6. Determine the radius of convergence for the power series
(a) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}(x+2)^{n}}{3^{n}}$
7. For the equation $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$
(a) Determine a lower bound for the radius of convergence for the series solutions for the differential equation about $x_{0}=0$.
(b) Seek its power series solution about $x_{0}=0$. Find the recurrence relation.
(c) Find the general term of each solution $y_{1}(x)$ and $y_{2}(x)$
(d) Find the first four terms in each of the solutions. Show that $W\left[y_{1}, y_{2}\right](0) \neq 0$.
