

Math 308: Week-in-Review 9 Shelvean Kapita

- 1. Find the following convolutions using the definition only
 - (a) $e^t * e^{3t}$

(b) $t * t^n$, where $n = 0, 1, 2, \cdots$

- 2. Using the Laplace transform (instead of the definition) compute the following convolutions
 - (a) $u_a(t) * u_b(t)$

(b) $t^n * t^m$, where $n = 0, 1, 2, \cdots$

3. In each of the following cases find a function (or generalized function) g(t) that satisfies the equality for $t \ge 0$

(a)
$$t * g(t) = t^4$$

(b) $1 * 1 * g(t) = t^2$

(c) 1 * g(t) = 1

4. Write the inverse Laplace transform in terms of a convolution integral

$$F(s) = \frac{s}{(s+1)^2(s+4)^3}$$

5. Solve the initial value problem

$$y'' - 2y' - 3y = g(t), y(0) = 1, y'(0) = -3.$$

6. Determine the radius of convergence for the power series

(a)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2 (x+2)^n}{3^n}$$

- 7. For the equation $(x^2 + 1)y'' + xy' y = 0$
 - (a) Determine a lower bound for the radius of convergence for the series solutions for the differential equation about $x_0 = 0$.
 - (b) Seek its power series solution about $x_0 = 0$. Find the recurrence relation.
 - (c) Find the general term of each solution $y_1(x)$ and $y_2(x)$
 - (d) Find the first four terms in each of the solutions. Show that $W[y_1, y_2](0) \neq 0$.