

Problem 1. (a) Evaluate
$$\int_{-3}^{3} \int_{0}^{\pi/2} (y + y^{2} \cos x) dx dy$$
.
(b) Evaluate $\iint_{R} \frac{x}{y^{2}} dA$, where $R = [0, 4] \times [1, 2]$.
(c) Evaluate $\int_{0}^{2} \int_{0}^{\pi} (y \cos(xy)) dy dx$.

Problem 2. Find the volume of the solid S that is bounded by the paraboloid $x^2 + y^2 + z = 16$, $z = 0, 0 \le x \le 4, 0 \le y \le 4$.

Problem 3. Evaluate
$$\int_{1}^{4} \int_{1}^{\sqrt{x}} (x+y) dy dx$$
.

Problem 4. Evaluate $\iint_D x e^y dA$, where D is the region bounded by y = 0, $y = x^2$ and x = 2.

Problem 5. Find the volume of the solid under the surface z = xy and above the triangle with vertices (1, 1), (1, 2) and (2, 1).

Problem 6. Set up but do not evaluate $\iint_D ye^x dA$ in two different iterated integrals, where D is the triangular region with vertices (0,0), (1,1) and (2,0).

Problem 7. (a) Change the order of integration in $\int_0^4 \int_{\sqrt{y}}^2 f(x,y) dx dy$.

(b) Evaluate $\int_0^2 \int_x^2 e^{-y^2} dy dx$. (c) Evaluate $\int_0^2 \int_{y^2}^4 \sqrt{x} \sin x dx dy$.

Problem 8. Evaluate $\iint_R (x+2)dA$, where R is the region bounded by the circle $x^2 + y^2 = 4$.

Problem 9. Set up but do not evaluate $\iint_R 4ydA$, where *R* is the region in the second quadrant bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Problem 10. Evaluate $\iint_R 3x^2 dA$, where *R* is the region in the first quadrant enclosed by the circle $x^2 + y^2 = 9$ and the lines y = 0 and y = x.

Problem 11. (a) Change $\int_0^3 \int_0^{\sqrt{9-x^2}} x^2 dy dx$ to polar coordinates. Do not evaluate the integral. (b) Change $\int_0^4 \int_0^{\sqrt{4x-x^2}} \sqrt{x^2+y^2} dy dx$ to polar coordinates. Do not evaluate the integral.

Problem 12. Set up but do not evaluate an integral that gives the volume of the solid that lies above the xy-plane, below the sphere $x^2 + y^2 + z^2 = 81$ and inside the cylinder $x^2 + y^2 = 4$ in polar coordinates.

Problem 13. Find the volume of the solid bounded by the paraboloids $z = 20 - x^2 - y^2$ and $z = 4x^2 + 4y^2$.