Note $\sharp 5$: Sections 15.1-15.3

Problem 1. (a) Evaluate $\int_{-3}^{3} \int_{0}^{\pi / 2}\left(y+y^{2} \cos x\right) d x d y$.
(b) Evaluate $\iint_{R} \frac{x}{y^{2}} d A$, where $R=[0,4] \times[1,2]$.
(c) Evaluate $\int_{0}^{2} \int_{0}^{\pi}(y \cos (x y)) d y d x$.

Problem 2. Find the volume of the solid S that is bounded by the paraboloid $x^{2}+y^{2}+z=16$, $z=0,0 \leq x \leq 4,0 \leq y \leq 4$.
Problem 3. Evaluate $\int_{1}^{4} \int_{1}^{\sqrt{x}}(x+y) d y d x$.
Problem 4. Evaluate $\iint_{D} x e^{y} d A$, where D is the region bounded by $y=0, y=x^{2}$ and $x=2$.
Problem 5. Find the volume of the solid under the surface $z=x y$ and above the triangle with vertices $(1,1),(1,2)$ and $(2,1)$.
Problem 6. Set up but do not evaluate $\iint_{D} y e^{x} d A$ in two different iterated integrals, where D is the triangular region with vertices $(0,0),(1,1)$ and $(2,0)$.
Problem 7. (a) Change the order of integration in $\int_{0}^{4} \int_{\sqrt{y}}^{2} f(x, y) d x d y$.
(b) Evaluate $\int_{0}^{2} \int_{x}^{2} e^{-y^{2}} d y d x$.
(c) Evaluate $\int_{0}^{2} \int_{y^{2}}^{4} \sqrt{x} \sin x d x d y$.

Problem 8. Evaluate $\iint_{R}(x+2) d A$, where R is the region bounded by the circle $x^{2}+y^{2}=4$.
Problem 9. Set up but do not evaluate $\iint_{R} 4 y d A$, where R is the region in the second quadrant bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
Problem 10. Evaluate $\iint_{R} 3 x^{2} d A$, where R is the region in the first quadrant enclosed by the circle $x^{2}+y^{2}=9$ and the lines $y=0$ and $y=x$.
Problem 11. (a) Change $\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} x^{2} d y d x$ to polar coordinates. Do not evaluate the integral.
(b) Change $\int_{0}^{4} \int_{0}^{\sqrt{4 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ to polar coordinates. Do not evaluate the integral.

Problem 12. Set up but do not evaluate an integral that gives the volume of the solid that lies above the $x y$-plane, below the sphere $x^{2}+y^{2}+z^{2}=81$ and inside the cylinder $x^{2}+y^{2}=4$ in polar coordinates.
Problem 13. Find the volume of the solid bounded by the paraboloids $z=20-x^{2}-y^{2}$ and $z=4 x^{2}+4 y^{2}$.

