

TEXAS A&M UNIVERSITY College of Arts & Sciences

MATHEMATICS Math
 142 - Spring 2024Week in Review 5: 2.5, 2.6

Problem 1. Find the derivative
$$\left(ie \frac{df}{dx}\right)$$
 for the following:

(1) $f(x) = (4x^2 - 2x + 5)^{10}$

(2)
$$f(x) = 5x^3e^x + 2^x$$

(3)
$$f(x) = e^{5x^2}$$

(4)
$$f(x) = \log_2(x^2 e^{-x})$$

(5)
$$f(x) = \ln(\sqrt{x^2 - 5})$$

(6)
$$f(x) = \frac{1 + \ln(3x^2)}{1 + \ln(4x)}$$

(7)
$$f(x) = \log_5(3x^4 - 2x) e^{3x^2 + 1}$$

(8)
$$f(x) = \sqrt[3]{e^{x^2} \ln(4x^2 + 2x)}$$

Problem 2. Find the equation of the tangent line to the graph of $f(x) = e^{2x-3}$ at x = 3/2.

Problem 3. if $f(x) = \ln(x^3 + 2)$ find $f'(e^{1/3})$.

Problem 4. Use implicit differenciation to find $\frac{dy}{dx}$ for the following: (1) $x^2 + xy + y^2 = 7$

(2)
$$\sqrt{x} + \sqrt{y} = 16$$

4

(3) $x^2 + ye^{xy} = 1$

(4)
$$\log_{10}(5y^4) - e^{x^2y} = 10$$

6

Problem 5. Differentiate implicitly and find the equation of the tangent line at the given point. (1) $x^2 + y^2 = 4$ at the point $(1, -\sqrt{3})$.

(2) $\ln(xy) = y^2 - 1$ when x = 1.

Problem 6. The price demand function, $p(x) = -(-0.01x - 2)^4 + 303$, is for a brand of towels. p(x) is the price in dollars, per towel, when there is a demand for x towels.

(1) Find the marginal revenue function.

(2) Find the marginal revenue when 150 towels are sold. Interpret your answer.

Problem 7. A bank account has an initial balance of \$400. The account earns interest at an annual rate of 3.24% per year comprunded continuously. How fast is the account balance growing after 7 years?

Problem 8. Use the table below to answer the following questions

x	-6	0	5	8	64
f(x)	30	-6	19	58	4090
f'(x)	-12	0	10	16	128
g(x)	24	0	35	80	4224
g'(x)	-10	2	12	18	130

(1) Find h'(5) if $h(x) = x^2 - 3(g(x))^4$

(2) Find h'(8) if $h(x) = 5f(x)g(x^2)$

(3) Find h'(x) if h(x) = f(g(f(x) + 3))