Problem 1. Find the derivative $\left(i e \frac{d f}{d x}\right)$ for the following:
(1) $f(x)=\left(4 x^{2}-2 x+5\right)^{10}$
(2) $f(x)=5 x^{3} e^{x}+2^{x}$
(3) $f(x)=e^{5 x^{2}}$
(4) $f(x)=\log _{2}\left(x^{2} e^{-x}\right)$
(5) $f(x)=\ln \left(\sqrt{x^{2}-5}\right)$
(6) $f(x)=\frac{1+\ln \left(3 x^{2}\right)}{1+\ln (4 x)}$
(7) $f(x)=\log _{5}\left(3 x^{4}-2 x\right) e^{3 x^{2}+1}$
(8) $f(x)=\sqrt[3]{e^{x^{2}} \ln \left(4 x^{2}+2 x\right)}$

Problem 2. Find the equation of the tangent line to the graph of $f(x)=e^{2 x-3}$ at $x=3 / 2$.

Problem 3. if $f(x)=\ln \left(x^{3}+2\right)$ find $f^{\prime}\left(e^{1 / 3}\right)$.

Problem 4. Use implicit differenciation to find $\frac{d y}{d x}$ for the following: (1) $x^{2}+x y+y^{2}=7$
(2) $\sqrt{x}+\sqrt{y}=16$
(3) $x^{2}+y e^{x y}=1$
(4) $\log _{10}\left(5 y^{4}\right)-e^{x^{2} y}=10$

Problem 5. Differentiate implicitly and find the equation of the tangent line at the given point. (1) $x^{2}+y^{2}=4$ at the point $(1,-\sqrt{3})$.
(2) $\ln (x y)=y^{2}-1$ when $x=1$.

Problem 6. The price demand function, $p(x)=-(-0.01 x-2)^{4}+303$, , is for a brand of towels. $p(x)$ is the price in dollars, per towel, when there is a demand for x towels.
(1) Find the marginal revenue function.
(2) Find the marginal revenue when 150 towels are sold. Interpret your answer.

Problem 7. A bank account has an initial balance of $\$ 400$. The account earns interest at an annual rate of 3.24% per year comppunded continuously. How fast is the account balance growing after 7 years?

Problem 8. Use the table below to answer the following questions

x	-6	0	5	8	64
$f(x)$	30	-6	19	58	4090
$f^{\prime}(x)$	-12	0	10	16	128
$g(x)$	24	0	35	80	4224
$g^{\prime}(x)$	-10	2	12	18	130

(1) Find $h^{\prime}(5)$ if $h(x)=x^{2}-3(g(x))^{4}$
(2) Find $h^{\prime}(8)$ if $h(x)=5 f(x) g\left(x^{2}\right)$
(3) Find $h^{\prime}(x)$ if $h(x)=f(g(f(x)+3))$

