Math 150 - Week-In-Review 2
 Sana Kazemi

Problem Statements

1. Perform the operations and simplify.
(a) $\frac{2 x^{2}-5 x-3}{6 x^{2}+3 x} \cdot \frac{3 x^{2}+12 x-15}{x^{2}+2 x-15}$
(b) $\frac{x^{2}+5 x-14}{x^{2}+8 x+7} \div \frac{x^{2}-x-2}{x-3}$
(c) $\frac{x+2}{x^{2}-2 x-8}-\frac{x-2}{x^{2}-4}$
(d) $\frac{\frac{1}{x}-\frac{1}{2 x^{2}}}{\frac{2}{x}-1}$

TEXAS A\&M UNIVERSITY
Mathematics
2. Determine whether the function is even, odd, or neither. Then describe the symmetry.
(a) $f(x)=\frac{x\left(x^{2}-1\right)}{5 x^{4}+1}$
(b) $g(x)=\sqrt[3]{x^{2}-1}$
(c) $h(x)=\frac{x^{3}-1}{x^{4}+2}$
3. If $h(x)=\frac{3 x}{2}+1$ evaluate the following:
(a) $h(a)$
(b) $h(a+b)$
(c) $\frac{h(a+b)-h(a)}{b}$

TEXAS A\&M UNIVERSITY Mathematics
4. Consider the complex numbers $z_{1}=1+\sqrt{-27}$ and $z_{2}=2-\sqrt{-12}$.
(a) Write z_{1} and z_{2} in standard form.
(b) Find $z_{1}+z_{2}, z_{1}-z_{2}$, and $z_{1} z_{2}$.
(c) Find the complex conjugate of z_{1}.
(d) Find $z_{2} \div z_{1}$.
5. Solve the equation by using the quadratic formula. $x^{2}=5-2 x$
6. Solve the equation $5 x^{2}+2 x-1=0$ by completing the square.
7. Perform the indicated operation on the functions $f(x)=\frac{x-1}{x+2}$ and $g(x)=\sqrt{2 x+3}$ and determine the domain of each new function.
a. $(f+g)(x)$
b. $(f g)(x)$
c. $\left(\frac{f}{g}\right)(x)$
d. $(f \circ g)(x)$
e. $(g \circ f)(x)$
f. $(f \circ f)(x)$
8. The graph of a function g is given below.

a) Identify the parent function f.
b) Describe the sequence of transformations from f to g.
c) Find the function g.
d) Use function notation to write g in terms of f.
9. Consider the function $g(x)=-2|-x+3|-4$.
a) Identify the parent function f.
b) Describe the sequence of transformations from f to g.
c) Use function notation to write g in terms of f.
d) Sketch the graph of g.

10. Write the given functions in standard form. Then determine the vertex, whether the vertex is a maximum or minimum, and the axis of symmetry.
a) $g(x)=-3 x^{2}-18 x-2$
b) $f(x)=4 x^{2}+2 x+9$
11. Find the x-intercepts of the following functions.
a) $h(x)=\frac{1}{3} x^{2}-4 x+3$
b) $f(x)=2 x^{\frac{5}{2}}-x^{\frac{3}{2}}-x^{\frac{1}{2}}$
12. A farmer decides to enclose a rectangular stall against a river so his horses have water access. The figure below shows the shape he wants to make. If he has 1800 feet of fencing, what values for x and y will maximize the enclosed area with no fencing against the river? What is the maximum area he can enclose?

