Math 150 - Week-In-Review 8 Sana Kazemi

 Problem Statements

 Problem Statements}

1. Solve each of the following. Always check for extraneous solutions.
(a) $\log _{5}(4 y)=3$
(b) $\log _{9}(x+2)=\log _{27}(6)$
(c) $\log _{5}(x)+\log _{5}(x+4)=1$
2. find domain of the function $f(x)=\frac{\sqrt{5-x}+e^{3 x}}{\log _{3}(x+2)}$
3. If an investment of $\$ 2000$ grows to $\$ 2500$ after 3 years with an annual interest rate of 4%, compounded annually, find the time it takes for an investment of $\$ 2000$ to grow to $\$ 3000$.
4. If you invest $\$ 2000$ in an account with an annual interest rate of 4%, compounded continuously, how much money will you have after 8 years?
5. If the amount of a radioactive substance decreases to one-third of its initial amount in 20 years, find the half-life of the substance.
6. The number of bacteria y in a culture after t days is given by the function $y(t)=100 e^{t / 8}$. After how many days will there be 4,000 bacteria?
7. A cup of coffee cools from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 5 minutes. If the room temperature is $25^{\circ} \mathrm{C}$, what will be the temperature of the coffee after 15 minutes?
8. A population of rabbits can be modeled using the logistic equation

$$
N(t)=\frac{1000}{1+524 e^{-0.18 t}}
$$

How long does it take for population of rabbits to grow to 4200 ?
9. Perform the operation $\frac{x^{2}+5 x-14}{x^{2}+8 x+7} \div \frac{x^{2}-x-2}{x-3}$ and simplify.
10. For the function $g(x)=\sqrt{6-2 x}$ compute and simplify the difference quotient.
11. For the following function $g(x)=\frac{8 x^{2}-10 x+3}{x-1}$ find Vertical, Horizontal and Slant asymptote(s).
12. $f(x)=\frac{2 x^{2}-7 x+3}{x^{2}-2 x-3}$

Domain: \qquad
Hole(s): \qquad
Vertical Asymptote(s): \qquad y-intercept: \qquad
x-intercept(s): \qquad
Horizontal Asymptote(s): \qquad

TEXAS A\&M UNIVERSITY Mathematics
13. Solve for v in the following equation.

$$
\left|\frac{(v+4)(v+5)}{v^{2}-1}\right|=1
$$

14. For the following function, state the domain, identify the intercepts, analyze the end behavior and sketch the graph.

$$
h(x)=\sqrt{x+3}(1+3 x)^{-\frac{1}{5}}
$$

15. Solve $\sqrt{t^{4}+9}=\sqrt{6} t$ for t.
16. Find the intervals where the following inequality is true. $2 x(2 x-3)^{-2} \leq 4(2 x-3)^{-3}$
17. Given $f(x)=\frac{-3 x+4}{x-2}$ is a one-to-one function, compute $f^{-1}(x)$ and state domain and range of $f(x)$ and $f^{-1}(x)$.
18. Describe the transformation(s) of the graph of $f(x)=3^{x}$ that yield(s) the graph of $g(x)=3^{-0.7 x}+1$, then choose the graph that matches the function.

Transformations:

Domain:
x-intercept(s):
y-intercept(s):

Horizontal Asymptote(s):

If $g(x)$ is composition of two functions, $f(x)=3^{x}$ and $h(x)$ such that $g(x)=h(f(-0.7 x))$. Find $h(x)$.
19. Describe the transformations of $f(x)=\log _{2}(x)$ that yield $g(x)=-\log _{2}(x-4)+2$. Then state the domain, x-intercept, and vertical asymptote of the logarithmic function $f(x)$, then choose the graph that matches the function.

Transformations:

Domain:
x-intercept(s):
y-intercept(s):

Vertical Asymptote(s):
20. Solve $\frac{15}{100+e^{2 x}}=3$ for x. Always check for extraneous solutions.
21. Use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms. (Assume all variables are positive.)
$\ln \sqrt[3]{\frac{x^{2}}{x^{2}-8 x-20}}$

