Math 308: Week-in-Review 10

Shelvean Kapita

Review for Exam 2

1. $(3.5,3.6)$ Find the general solution of the second order differential equation
(a) $y^{\prime \prime}+4 y^{\prime}+5 y=e^{-2 t} \sin t \quad$ Find homogeneous solution *
$r^{2}+4 r+5=0 \Rightarrow r=\frac{-4 \pm \sqrt{4^{2}-4 \cdot 5}}{2}$
$=\frac{-4 \pm 2 i}{2}=-2 \pm i$
$y(t)=y_{c}^{y}(t)+y_{\underset{L}{ }(t)}^{\rightarrow p a r}$
homogeneous \rightarrow particular

$$
c_{1} e^{-2 t} \cos (t)+c_{2} e^{-2 t} \sin (t)
$$

* Method of variation of parameter $* \quad y_{1}(t)=e^{-2 t} \cos (t), y_{2}(t)=e^{-2 t} \sin (t)$

$$
\begin{aligned}
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \text { where } u_{1}(t)=\int \frac{-y_{2}(t) r(t)}{w\left[y_{1}, y_{2}\right](t)} d t \& u_{2}(t)=\int \frac{y_{1}(t) r(t)}{w\left[y_{1}, y_{2}\right](t)} d t \\
& w\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}
-2 t & e^{-2 t} \sin t \\
-2 e^{-2 t} \cos t-e^{-2 t} \sin t & -2 e^{-2 t} \sin t+e^{-2 t} \cos t
\end{array}\right|=e^{-4 t} \cos ^{2} t-2 e^{-4 t}=e^{-4 t}
\end{aligned}
$$

$$
r(t)=e^{-2 t} \sin t \text { (right hond side) } \leqslant \text { standard form! } \quad \begin{aligned}
\cos 2 t & =\cos ^{2} t-\sin ^{2} t \\
& =1-2 \sin ^{2} t=2 \cos ^{2} t-1
\end{aligned}
$$

$$
\begin{aligned}
u_{1}=\int-\frac{e^{-2 t} \sin t \cdot e^{-2 t} \sin t}{e^{4 t}} d t & =\int-\sin ^{2} t d t=\frac{1}{2} \int(\cos 2 t-1) d t \sin ^{2} t=\frac{1}{2}(1-\cos 2 t) \\
u_{1} & =\frac{1}{4} \sin 2 t-\frac{t}{2}
\end{aligned}
$$

$$
u_{2}=\int \frac{e^{-2 t} \cos t \cdot e^{-2 t} \sin t}{e^{-4 t}} d t=\int \cos t \cdot \sin t d t=\frac{1}{2} \int \sin (2 t) d t=-\frac{1}{4} \cos (2 t)
$$

$$
\begin{aligned}
& =\frac{1}{4} e^{-2 t} \cos t \sin (2 t)-\frac{t}{2} e^{-2 t} \cos t-\frac{1}{4} e \sin t \cos (2 t) \\
& =\frac{1}{2} e^{-2 t} \cos 2 / t \sin t-\frac{t}{2} e^{-2 t} \cos t-\frac{1}{2} e^{-2 t} / \cos t \sin t-\frac{1}{4} e^{-2 t} \sin t
\end{aligned}
$$

$$
y_{p}=-\frac{t}{2} e^{-2 t} \cos t
$$

general solution of

$$
y(t)=c_{1} e^{-2 t} \cos t+c_{2} e^{-2 t} \sin t-\frac{t}{2} e^{-2 t} \cos t
$$

c the non-homogeneous eq.
(b) (3.6) The general solution of the homogeneous equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0, x>0$, is given by $y_{c}(x)=c_{1} x^{2}+c_{2} x^{2} \ln x$. Find the general solution of the nonhomogeneous equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2} \ln x, x>0$.

* method of variation of parameters *
$y(x)=y_{c}(x)+y_{p}(x)=c_{1} x^{2}+c_{2} x^{2} \ln x+y_{p}(x)$, where $y_{p}(x)=u_{1} y_{1}+u_{2} y_{2}$
$y_{1}(x)=x^{2}, y_{2}(x)=x^{2} \ln x, u_{1}=\int \frac{-y_{2}(x) r(x)}{w\left[y_{1}, y_{2}\right]} d x, u_{2}=\int \frac{y_{1}(x) r(x)}{w\left[y_{1}, y_{2}\right]} d x$

$$
r(x)=\frac{x^{2} \ln x}{x^{2}}=\ln x \text { (right hand side) in standard form! } y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)
$$

$$
W\left[y_{1}, y_{2}\right]=\left|\begin{array}{ll}
x^{2} & x^{2} \ln x \\
2 x & 2 x \ln x+x
\end{array}\right|=\underset{\substack{2 x^{3} \ln x+x^{3}-2 x^{3} \ln x \\
\rightarrow u=\ln x \Rightarrow d u^{2}=1 / x d x}}{ }=x^{3}
$$

$$
u_{1}=\int \frac{-x^{2} \ln x \cdot \ln x}{x^{3}} d x=\int-\frac{(\ln x)^{2}}{x} d x=\int-u^{u} d u=-\frac{u^{3}}{3}=\frac{-(\ln x)^{3}}{3}
$$

$$
u_{2}=\int \frac{x^{2} \ln x}{x^{3}} d x=\int \frac{\ln x}{x} d x=\int u d u=\frac{u^{2}}{2}=\frac{(\ln x)^{2}}{2}
$$

$$
y_{p}(x)=-\frac{x^{2}(\ln x)^{3}}{3}+\frac{x^{2}(\ln x)^{3}}{2}=\frac{x^{2}(\ln x)^{3}}{6}
$$

2. $(3.7,3.8)$ A string is stretched 10 cm by a force of 0.3 N . A mass of 0.25 kg is hung from the spring, and also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass is 6 m / s. The mass is pulled down 5 cm below its equilibrium position and given an initial velocity of $10 \mathrm{~cm} / \mathrm{s}$ downward.
(a) Determine the position u as a function of time t
(b) Find the quasifrequency of the motion.
(c) If this system is also subjected to an external force $F(t)=2 \cos (4 t)$, find $u(t)$, and the amplitude, period, and phase of the steady state motion.

$$
\begin{aligned}
& m u^{\prime \prime}+c u^{\prime}+k u=F_{\text {ext }} \quad * m=\text { mass }=0.25 \mathrm{~kg}=\frac{1}{4} k g \\
& F_{\text {ext }}=\underset{\text { external }}{\text { force }}=0 \\
& \text { * } C=\underset{\text { damping }}{\text { conf }}=\frac{F}{v}=\frac{3 \mathrm{~N}}{6 \mathrm{~m} / \mathrm{s}}=\frac{1}{2} \mathrm{Ns} / \mathrm{m} \\
& \text { * } k=\underset{\text { coot }}{\text { spring }}=\frac{F}{\Delta u}=\frac{0.3 \mathrm{~N}}{0.1 \mathrm{~m}}=3 \mathrm{~N} / \mathrm{m} \\
& \left\{\begin{array}{l}
\frac{1}{4} u^{\prime \prime}+\frac{1}{2} u^{\prime}+3 u=0 \\
u(0)=0.05 m, u^{\prime}(0)=0.1 \mathrm{~m} / \mathrm{s}^{\Leftrightarrow} \Leftrightarrow u^{\prime \prime}+2 u^{\prime}+12 u=0
\end{array}\right. \\
& \text { (a) } \lambda^{2}+2 \lambda+12=0 \Rightarrow \lambda=\frac{-2 \pm \sqrt{2^{2}-4.12}}{2}=\frac{-2 \pm \sqrt{-44}}{2}=-1 \pm \sqrt{11} \\
& u(t)=c_{1} e^{-t} \cos (\sqrt{11} t)+c_{2} e^{-t} \sin (\sqrt{11} t), u(0)=c_{1}=0.05 \mathrm{~m} \\
& u^{\prime}(t)=-c_{1} e^{-t} \cos (\sqrt{11} t)-\sqrt{11} c_{1} e^{-t} \sin (\sqrt{11} t)-c_{2} e^{-t} \sin (\sqrt{11} t)+\sqrt{11} c_{2} e^{-t} \cos (\sqrt{11} t) \\
& u^{\prime}(0)=-c_{1}+\sqrt{11} c_{2}=-0.05+\sqrt{11} c_{2}=0.1 \Rightarrow \sqrt{11} c_{2}=0.15
\end{aligned}
$$

(b) Quasifrequency

$$
u(t)=0.05 e^{-t} \cos (\sqrt{11} t)+\frac{0.15}{\sqrt{11}} e^{-t} \sin (\sqrt{11} t)
$$

(c)

$$
\begin{aligned}
& \frac{1}{4} u^{\prime \prime}+\frac{1}{2} u^{\prime}+3 u=2 \cos (4 t) \Rightarrow u^{\prime \prime}+2 u^{\prime}+12 u=8 \cos (4 t) \\
& u=u_{c}+u_{p} \rightarrow \text { steady state }
\end{aligned}
$$

tends to zero as $t \rightarrow \infty$ (transient)

$$
\begin{array}{cl}
(\operatorname{transient}) & \\
u_{p}(t)=A \cos (4 t)+B \sin (4 t) & u_{p}^{\prime \prime}(t)=-16 A \cos (4 t)-16 B \sin (4 t) \\
u_{p}(t)=-4 A \sin (4 t)+4 B \cos (4 t) & \begin{array}{l}
\text { }(4)+B^{2} \rightarrow \operatorname{amplitude} \\
\\
\tan \delta=\frac{B}{A} \rightarrow \text { phase }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
u_{p}^{\prime \prime}+2 u_{p}^{\prime}+12 u_{p}=8 \cos (2 t) \\
\cos (2 t):-16 A+8 B+12 A=8 \\
\sin (2 t):-16 B-8 A+12 B=0
\end{array}\right\} \begin{array}{l}
8 B-4 A=8 \\
B=-2 A B-8 A=0
\end{array}\right\} \\
& \begin{array}{l}
-4=-2 / 5, B=4 / 5 \\
u_{p}(t)=-2 / 5 \cos (4 t)+4 / 5 \sin (4 t)
\end{array}
\end{aligned}
$$

Amplitude: $\quad R=\sqrt{A^{2}+B^{2}}=\sqrt{(-2 / 5)^{2}+(4 / 5)^{2}}=\frac{\sqrt{20}}{5}=\frac{2 \sqrt{5}}{5}=\frac{2}{\sqrt{5}}$

Phase: $\tan \varphi=B / A=\frac{4 / 5}{-2 / 5}=-2$

$$
\begin{aligned}
& \varphi=\arctan (-2)+\pi=\pi-\arctan (2)(\mathrm{rad}) \\
& \omega=4 \mathrm{rad} / \mathrm{sec}, T=\frac{2 \pi}{\omega}=\frac{\pi}{2} \sec \\
& u(t)=u_{c}(t)+u_{p}(t)=e^{-t}\left(c_{1} \cos (\sqrt{11} t)+c_{2} \sin (\sqrt{11} t)\right)
\end{aligned}
$$

transient solution

$$
t
$$

$$
-2 / 5 \cos (4 t)+4 / 5 \sin (4 t)
$$

$$
\uparrow
$$

steady - state
3. (6.1) Find the Laplace transform of the following function using the definition of Laplace transform

$=-\left.\frac{t}{s} e^{-s t}\right|_{0} ^{1}-\left.\frac{1}{s^{2}} e^{-s t}\right|_{0} ^{1}-\left.\frac{2}{s} e^{-s t}\right|_{1} ^{2}+\left.\frac{t}{s} e^{-s t}\right|_{1} ^{2}+\left.\frac{1}{s^{2}} e^{-s t}\right|_{1} ^{2}$
$=-\frac{1}{8} e^{s}-\frac{1}{s^{2}} e^{-s}+\frac{1}{s^{2}}-\frac{2}{8} e^{-2 s}+\frac{2}{s} e^{-s}+\frac{2}{8} \varnothing^{-2 / s}-\frac{1}{s} \varnothing^{-s}+\frac{1}{s^{2}} e^{-2 s}-\frac{1}{s^{2}} e^{-s}$

$$
=-\frac{2}{s^{2}} e^{-s}+\frac{1}{s^{2}}+\frac{1}{s^{2}} e^{-2 s}
$$

(b) Find the Laplace transform of the above function using Heaviside unit step functions.

$$
\begin{array}{ll}
f(t)=t\left(u_{0}-u_{1}\right)+(2-t)\left(u_{1}-u_{2}\right) & =t u_{0}-t u_{1}+2 u_{1}-t u_{1}+u_{2}(t-2) \\
& =t u_{0}-2 u_{1}(t-1)+u_{2}(t-2) \\
* \mathcal{L}\left\{u_{c}(t)\right\}=\frac{e^{c s}}{s} * & \mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-c s} \mathcal{L}\{f(t)\} \\
\mathcal{L}\{f(t)\}=\frac{1}{s^{2}}-\frac{2 e^{-s}}{s^{2}}+\frac{e^{-2 s}}{s^{2}}
\end{array}
$$

4. (6.2, 6.3) Find the inverse Laplace transform of the function

$$
\begin{aligned}
& \text { * partial fractions decomposition * } \\
& s^{2}+s+1=A(s-3)\left(s^{2}+4\right) \\
& +B(s+3)\left(s^{2}+4\right) \\
& +(C s+D)(s+3)(s-3) \\
& F(s)=\frac{s^{2}+s+1}{\left(s^{2}+4\right)\left(s^{2}-9\right)}=\frac{s^{2}+s+1}{\left(s^{2}+4\right)(s+3)(s-3)} \\
& =\frac{A}{s+3}+\frac{B}{s-3}+\frac{C s+D}{s^{2}+4} \\
& S=3 ; \quad 13=B(6)(13) \Rightarrow B=1 / 6 \\
& S=-3 ; \quad 7=A(-6)(13) \Rightarrow A=\frac{-7}{78} \\
& S=2 i:-4+2 i+1=-3+2 i=(2 i C+D)(-4-9) \Rightarrow-3+2 i=-26 i C-13 D
\end{aligned}
$$

* real component: $-3=-13 D \Rightarrow D=3 / 13$
* imaginary component : $2 i=-26 i C \Rightarrow C=-\frac{1}{13}$

$$
\begin{aligned}
& F(s)=\frac{-7}{78(s+3)}+\frac{1}{6(s-3)}-\frac{s-3}{13\left(s^{2}+4\right)} \\
& \mathcal{L}^{-1}\left\{\frac{-7}{78(s+3)}\right\}=\frac{-7}{78} e^{-3 t}, \mathcal{L}^{-1}\left\{\frac{1}{6(s-3)}\right\}=\frac{1}{6} e^{3 t} \\
& \frac{s-3}{13\left(s^{2}+4\right)}=\frac{s}{13\left(s^{2}+4\right)}-\frac{3}{13} \frac{2}{\left(s^{2}+4\right)} \cdot \frac{1}{2}=\frac{s}{13\left(s^{2}+4\right)}-\frac{3}{26} \frac{2}{s^{2}+4} \\
& \mathcal{L}^{-1}\left\{\frac{s}{13\left(s^{2}+4\right)}\right\}=\frac{1}{13} \cos (2 t) \\
& f(t)=-\frac{7}{7}\left\{\frac{3}{26} \frac{2}{s^{2}+4} e^{-3 t}+\frac{1}{6} e^{3 t}-\frac{1}{13} \cos (2 t)+\frac{3}{26} \sin (2 t)\right.
\end{aligned}
$$

5. (6.2, 6.3) Find the inverse Laplace transform of the function

$$
\begin{aligned}
& F(s)=\frac{e^{-2 s}\left(s^{2}+s+1\right)}{s(s+2)^{2}} \\
& \frac{s^{2}+s+1}{s(s+2)^{2}}=\frac{A}{s}+\frac{B}{s+2}+\frac{C}{(s+2)^{2}} \\
& =e^{-2 s}\left[\frac{1}{4 s}+\frac{3}{4(s+2)}-\frac{3}{2(s+2)^{2}}\right] \\
& s^{2}+s+1=A(s+2)^{2}+B s(s+2)+C s \\
& \begin{array}{ll}
S=0: & 1=4 A \Rightarrow A=1 / 4 \\
S=-2: & 3=-2 C \Rightarrow C=-3 / 2
\end{array} \\
& =\frac{e^{-2 s}}{4 s}+\frac{3 e^{-2 s}}{4(s+2)}-\frac{3 e^{-2 s}}{2(\delta+2)^{2}} \\
& S=-2: 3=-2 C \Rightarrow C=-3 / 2 \quad \square \mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-c s} \mathcal{L}\{f(t)\} * \\
& S=1: \quad 3=\frac{9}{4}+3 B-\frac{3}{2} \Rightarrow 3 B=\frac{12}{4}-\frac{9}{4}+\frac{6}{4} \\
& =\frac{9}{4} \\
& B=3 / 4 \\
& f(t)=\frac{1}{4} u_{2}(t)+\frac{3}{4} u_{2}(t) e^{-2(t-2)}-\frac{3}{2} u_{2}(t) e^{-(t-2)}[t-2]
\end{aligned}
$$

6. ($6.3,6.4)$ Find the solution of the initial value problem

$$
\begin{aligned}
& \text { (a) } y^{\prime \prime}+2 y^{\prime}+y=\left\{\begin{array}{ll}
\sin 2(t-\pi / 2), & 0 \leq t<\pi / 2, \\
0, & \pi / 2 \leq t<\infty
\end{array}, \quad y(0)=1, \quad y^{\prime}(0)=0 .\right. \\
& f(t)=\sin \left[2\left(t-\frac{\pi}{2}\right)\right]\left[u_{0}-u_{\pi / 2}\right]=\sin \left(2\left(t-\frac{\pi}{2}\right)\right)-u_{\frac{\pi}{2}}^{(t)} \sin \left[2\left(t-\frac{\pi}{2}\right)\right] \\
& =\sin [2 t-\pi]-u_{\frac{\pi}{2}}(t) \sin \left[2\left(t-\frac{\pi}{2}\right)\right] \\
& s^{2} \mathcal{L}\left\{y^{\}}\right\}-s y(0)-y^{\prime}(0)+2 s \mathcal{L}\left\{y^{\prime}\right\}-2 y(0)+\mathcal{L}\{y\}=\frac{-2}{s^{2}+4}-\frac{2 e^{-\pi / 2 s}}{s^{2}+4} \\
& \mathcal{L}\{y\}\left(s^{2}+2 s+1\right)=s+2-\frac{2}{s^{2}+4}-\frac{2 e^{-\frac{\pi}{2} s}}{s^{2}+4} \\
& \mathcal{L}\{y\}=\frac{s+2}{(s+1)^{2}}-\frac{2}{(s+1)^{2}\left(s^{2}+4\right)}-\frac{2 e^{-\frac{\pi}{2} s}}{(s+1)^{2}\left(s^{2}+4\right)} \\
& \frac{s+2}{(s+1)^{2}}=\frac{s+1+1}{(s+1)^{2}}=\frac{1}{s+1}+\frac{1}{(s+1)^{2}} \xrightarrow{\mathcal{L}^{-1}} e^{-t}+t e^{-t} \\
& \frac{-2}{(s+1)^{2}\left(s^{2}+4\right)}=-\frac{1}{(s+1)^{2}} \cdot \frac{2}{s^{2}+4} \stackrel{\mathcal{L}^{-1}}{\left.\longmapsto-\left(t e^{-t}\right) * \sin (2 t)\right) ~} \\
& \frac{-2 e^{-\frac{\pi}{2} s}}{(s+1)^{2}\left(s^{2}+4\right)}=-\frac{1}{(s+1)^{2}} \cdot \frac{2 e^{-\frac{\pi}{2} s}}{s^{2}+4} \stackrel{\mathcal{L}}{ }>-\left(t e^{-1}\right) * u_{\frac{\pi}{2}}^{(t)} \sin \left[2\left(t-\frac{\pi}{2}\right)\right] \\
& =\left(t e^{-t}\right) * u_{\pi / 2}(t) \sin (2 t) \\
& y(t)=e^{-t}+t e^{-t}-\int_{0}^{t} x e^{-x} \sin (2(t-x)) d x+\int_{0}^{t} x e^{-x} \cdot u_{\pi / 2}(t-x) \sin (2(t-x)) d x
\end{aligned}
$$

(b) (6.5) $y^{\prime \prime}+2 y^{\prime}+y=e^{-t}+\delta(t-3), y(0)=0, y^{\prime}(0)=3$.

$$
\begin{gathered}
s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)+2 s \mathcal{L}\{y\}-2 y(0)+y(s)=\frac{1}{s+1}+e^{-3 s} \\
\mathcal{L}\{y\}\left(s^{2}+2 s+1\right)=3+\frac{1}{s+1}+e^{-3 s} \\
\mathcal{L}\{y\}=\frac{3}{(s+1)^{2}}+\frac{1}{(s+1)^{3}}+\frac{e^{-3 s}}{(s+1)^{2}} \\
y(t)=3 t e^{-t}+\frac{1}{2} t^{2} e^{-t}+u_{3}^{(t)} e^{-(t-3)}[t-3]
\end{gathered}
$$

where we used * $\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a) *$

$$
\text { and } * \mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-c s} \mathcal{L}\{f(t)\} *
$$

7. (6.6)
(a) Use the definition of convolution to compute $(t * \sin t)$.

$$
\begin{aligned}
(t * \sin t) & =\int_{0}^{t}(t-x) \sin (x) d x \\
& =\int_{0}^{t} t \sin (x) d x-\int_{0}^{t} x \sin x d x \\
& =-\left.t \cos (x)\right|_{0} ^{t}+\left.x \cos x\right|_{0} ^{t}-\left.\sin x\right|_{0} ^{t}-\frac{x}{1-\sin x} \frac{1-\cos x}{0} \\
& =-t \cos t+t+t \cos t-\sin t \\
& =t-\sin t
\end{aligned}
$$

(b) Use the Convolution Theorem to find the inverse Laplace transform of

$$
\left.\begin{array}{rl}
F(s) & =\frac{1}{s+1} \cdot \frac{s}{s^{2}+4} \\
& =\mathcal{L}\left\{e^{-t}\right\} \mathcal{L}\{\cos (2 t)\} \\
\mathcal{L}^{-1}\{F(s)\} & =e^{-t} * \cos (2 t)
\end{array}=\int_{0}^{t} e^{-(t-x)\left(s^{2}+4\right)} \cos (2 x) d x\right]
$$

8. Find the radius and interval of convergence of the series

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{n} n!}{3 \cdot 5 \cdots(2 n+1)} x^{2 n+1}
$$

* by the ratio test *

$$
\begin{aligned}
& \left|\frac{(-1)^{n+1} 2^{n+1}(n+1)!x^{2 n+3}}{3 \cdot 5 \cdots(2 n+3)} \cdot \frac{3 \cdot 5 \cdots(2 n+1)}{(-1)^{n} 2^{n} n!x^{2 n+1}}\right| \\
& =\left|x^{2}\right| \lim _{n \rightarrow \infty} \frac{2(n+1)}{(2 n+3)} \\
& =\left|x^{2}\right|<1 \Rightarrow|x|<1
\end{aligned}
$$

* radius of convergence * $R=1$
$*$ interval of convergence $* \quad-1<x<1$

9. (5.2) Consider the initial value value problem

$$
y^{\prime \prime}+x^{2} y^{\prime}+2 x y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(a) Solve the initial value problem using a series of the form $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find the recurrence relation.
(b) Find the first 6 terms of the series solution.
(c) Write down the solution using summation notation.

$$
\begin{aligned}
& \text { (a) } y=\sum_{n=0}^{\infty} a_{n} x^{n}, y^{\prime}=\sum_{n=0}^{\infty} n a_{n} x^{n-1}, y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2} \\
& \sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} n a_{n} x^{n+1}+\sum_{n=0}^{\infty} 2 a_{n} x^{n+1}=0 \\
& \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=1}^{\infty}(n-1) a_{n-1} x^{n}+\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}=0 \\
& 2 a_{2}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}+(n-1) a_{n-1}+2 a_{n-1}\right] x^{n}=0 \\
& a_{2}=0, a_{0}=1, a_{1}=0 \\
& a_{n+2}=-\frac{2+(n-1)}{(n+2)(n+1)} a_{n-1}=\frac{-1}{n+2} a_{n-1}, n \geq 1 \\
& \begin{array}{l}
a_{3}=-\frac{1}{3} a_{0}=-\frac{1}{3}, a_{4}=0, a_{5}=0, \\
a_{7}=0, a_{8}=0, a_{9}=-\frac{1}{9} a_{6}=-\frac{1}{3.6 .9}
\end{array} \\
& =-\frac{1}{3.6 .9} ; a_{3 n}=(-1)^{n} \frac{1}{3.6 .9 \cdots(3 n)}
\end{aligned}
$$

(b) $y(x)=1-\frac{1}{3} x^{3}+\frac{1}{3 \cdot 6} x^{6}-\frac{1}{3 \cdot 6 \cdot 9} x^{9}+\frac{1}{3 \cdot 6 \cdot 9 \cdot 12} x^{12}-\ldots$.

$$
\text { (b) } \begin{aligned}
y(x) & =1-\frac{1}{3} x+\overline{3 \cdot 6}^{3 \cdot 6}-\sqrt{3 \cdot 6 \cdot 9} x+\frac{3 \cdot 6 \cdot 9 \cdot 12}{x}-\cdots \cdot \\
\text { (c) } & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n}}{3 \cdot 6 \cdot \cdots(3 n)}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n}}{3^{n} n!}\left(-\frac{x^{3}}{3}\right)^{n} \frac{1}{n!}=e^{-x^{3} / 3}
\end{aligned}
$$

