Math 150 - Week-In-Review 8
Sana Kazemi

Problem Statements

1. Solve each of the following. Always check for extraneous solutions.
(a) $\log _{5}(4 y)=3$
check for extraneous solutions: $4 y>0 \rightarrow y>0 \Rightarrow$ domain $y \in(0, \infty)$

$$
\log _{5}(4 y)=3 \Longleftrightarrow 4 y=5^{3} \rightarrow y=\frac{125}{4}
$$

(b) $\log _{9}(x+2)=\log _{27}(6)$
different base \sim take common base first
check for extraneous solutions:

$$
\begin{aligned}
& x+2>0 \rightarrow x>-2 \Rightarrow \text { domain } x \in(-2, \infty) \\
& 9=3^{2} \& 27=3^{3} \\
& \frac{\log _{3}(x+2)}{\log _{3} 9}=\frac{\log _{3} 6}{\log _{3}^{27}} \rightarrow \frac{\log _{3}^{(x+2)}}{2}=\frac{\log _{3}^{6}}{3} \rightarrow \frac{1}{2} \log _{3}(x+2)=\frac{1}{3} \log _{3}^{6} \\
& \log _{3}(x+2)^{\frac{1}{2}}=\sqrt[\log _{3}(6)^{\frac{1}{3}}]{\sqrt[3]{36}}
\end{aligned}
$$

(c) $\log _{5}(x)+\log _{5}(x+4)=1$

$$
\overbrace{\text { domain: } x \in(0, \infty)}^{\begin{array}{l}
x>0 \& \\
x>-4
\end{array}}
$$

$$
\begin{array}{r}
\log _{5} x(x+4)=1 \quad \Longleftrightarrow x^{2}+4 x=5^{1} \quad \Leftrightarrow x^{2}+4 x-5=0 \\
\\
(x+5)(x-1)=0 \\
x=-5 x \text { not in domain } \\
x=1
\end{array}
$$

2. find domain of the function $f(x)=\frac{\sqrt{x+5}+e^{3 x}}{\log _{3}(x+2)}$

Domain restrictions: $\sqrt{5-x}$:

$$
\begin{equation*}
5-x \geqslant 0 \rightarrow x \leqslant 5 \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
\log _{3}(x+2): \quad x+2>0 \rightarrow x>-2 \tag{B}
\end{equation*}
$$

\& from denominator

$$
\log _{3}(x+2) \neq 0 \quad \log _{3}(x+2)=0 \Longleftrightarrow(x+2)={\underset{\sim}{n}}_{3^{\circ}}^{1}
$$

$$
\begin{equation*}
x+2=1 \tag{c}
\end{equation*}
$$

3. If an investment of $\$ 2000$ grows to $\$ 2500$ after 3 years with an annual interest rate of 4%, com$n=1$ pounded annually, find
$P(t)=P\left(1+\frac{r}{n}\right)^{n t}$
p :initial principal, r : annual interest rate
n : \# of compounds per year t : \# of years
$A(t)$: final amount

$$
\begin{gathered}
3000=2000\left(1+\frac{0.04}{1}\right)^{1(t)} \rightarrow 3=2(1+0.04)^{t} \\
\frac{3}{2}=(1.04)^{t} \rightarrow \ln (3 / 2)=t \ln (1.04) \\
t
\end{gathered}
$$

4. If you invest $\$ 2000$ in an account with an annual interest rate of 4%, compounded continuously, how much money will you have after 8 years?

$$
A=p \cdot e^{r t}
$$

$$
A=2000\left(e^{0.04 \times 8}\right)=2000 \cdot e^{0.32} \approx \$ 298.20
$$

5. If the amount of a radioactive substance decreases to one-third of its initial amount in 20 years, find the half-life of the substance.
time it takes for half of the substance to decay.

$$
\text { radio active Decay: } \quad A(t)=A_{0} e^{k t}
$$

$$
A_{0} \text { initial ant, } k<0 \text { constant of Porportionality }
$$

$$
\frac{A_{0}}{3}=A_{0} e^{k(20)} \rightarrow e^{k(20)}=\frac{1}{3} \rightarrow k=\frac{\ln \left(\frac{1}{3}\right)}{20}=\frac{1}{20} \ln \left(\frac{1}{3}\right)
$$

$$
\begin{gathered}
\frac{A_{0}}{2}=A_{0} e^{k t} \sim e^{\left(\frac{1}{20} \ln \left(\frac{1}{3}\right)\right) t}=\frac{1}{2} \rightarrow \frac{1}{20} \cdot \ln \left(\frac{1}{3}\right) \cdot t=\ln \left(\frac{1}{2}\right) \\
t=\frac{20 \ln \left(\frac{1}{2}\right)}{\ln \left(\frac{1}{3}\right)} \quad \text { years }
\end{gathered}
$$

6. The number of bacteria y in a culture after t days is given by the function $y(t)=100 e^{t / 8}$. After how many days will there be 4,000 bacteria?

$$
\begin{aligned}
4000=100 e^{\frac{t}{8}} \rightarrow 40 & =e^{t / 8} \\
\ln (40) & =\frac{t}{8} \rightarrow t=8 \ln (40)
\end{aligned}
$$

7. A cup of coffee cools from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 5 minutes. If the room temperature is $25^{\circ} \mathrm{C}$, what will be the temperature of the coffee after 15 minutes?

Newton's law of cooling $\quad T(t)=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}$
To: initial temp. T_{a} : surrounding temp. $k>0$ constant of fore.
find k :

$$
\text { find k: } \begin{aligned}
70 & =25+(80-25) e^{-k(5)} \leadsto 45=(55) e^{-k(5)} \\
\frac{45}{55} & =e^{-5 k} \rightarrow \ln \left(\frac{9}{11}\right)=-5 k \rightarrow k=\frac{\ln (9 / 14)}{-5} \\
T(15) & =25+(80-25) e^{+\frac{\ln (9 / 1)}{5} \cdot 15}=25+(55) e^{+3 \ln \left(\frac{9}{11}\right)} \\
& =25+55 e^{\ln (9 / 11)^{+3}} \rightarrow T(15)=25+55\left(\frac{9}{11}\right)^{+^{3}}
\end{aligned}
$$

8. A population of rabbits can be modeled using the logistic equation

$$
N(t)=\frac{1000}{1} 24 e^{-0.18 t}
$$

How long does it take for population of rabbits to grow to $4200 ?$

$$
\begin{aligned}
& 4200=\frac{1000}{1-24 e^{-0.18 t}} \stackrel{\text { cross }}{\underset{\text { multiply }}{\sim}} 42\left(1-24 e^{-0.18 t}\right)=10 \\
& \begin{aligned}
& 1-24 e^{-0.18 t}=\frac{58}{42} \rightarrow-24 e^{-0.18 t} \\
& 21=\frac{5}{21}-1 \\
&-24 e^{-0.18 t}=\frac{-16}{21}
\end{aligned} \\
& e^{-0.18 t}=\frac{16}{21 \times 24} \rightarrow-0.18 t=\ln \left(\frac{16}{21 \times 24}\right) \\
& t=\frac{\ln \left(\frac{162}{21 \times 243}\right)}{-0.18}=\frac{\ln \left(\frac{2}{63}\right)}{-0.18}
\end{aligned}
$$

9. Perform the operation $\frac{x^{2}+5 x-14}{x^{2}+8 x+7} \div \frac{x^{2}-x-2}{x-3}$ and simplify.

$$
\begin{aligned}
& =\frac{(x+7)(x / 2)}{(x+7)(x+1)} \cdot \frac{x-3}{(x-2)(x+1)} \\
& =\frac{x-3}{(x+1)^{2}}
\end{aligned}
$$

10. For the function $g(x)=\sqrt{6-2 x}$ compute and simplify the difference quotient.

$$
\begin{gathered}
g(x+h)=\sqrt{6-2(x+h)}=\sqrt{6-2 x-2 h} \\
\frac{g(x+h)-g(x)}{h}=\frac{\sqrt{6-2 x-2 h}}{h}=\frac{\sqrt{6-2 x}}{\sqrt{6-2 x-2 h}+\sqrt{6-2 x}} \\
=\frac{(6-2 x-2 h)-(6-2 x)}{h(\sqrt{6-2 x-2 h}+\sqrt{6-2 x})}=\frac{-2 h}{K(\sqrt{6-2 x-2 h}+\sqrt{6-2 x})}=\frac{-2}{\sqrt{6-2 x-2 h}+\sqrt{6-2 x}}
\end{gathered}
$$

11. For the following function $g(x)=\frac{8 x^{2}-10 x+3}{x-1}$ find Vertical, Horizontal and Slant asymptotes).

$$
g(x)=\frac{(2 x-1)(4 x-3)}{x-1} \quad \Rightarrow \text { vertical Asymptote at } x=1
$$

Horizontal Asymptote? $\frac{8 x^{2}-10 x+3}{x-1}=\frac{\frac{8 x^{2}}{x}-\frac{10 x}{x}+\frac{3}{x}}{\frac{x}{x}-\frac{1}{x}}=\frac{8 x-10+\frac{3}{x}}{1-\frac{1}{x}}$
as $x \rightarrow \infty \quad \frac{1}{x} \rightarrow 0, \quad \frac{3}{x} \rightarrow 0$ and $\quad 8 x \rightarrow \infty \quad$ therefore $g(x) \rightarrow \infty \quad \begin{aligned} & \text { No Horizontal } \\ & \text { Any. }\end{aligned}$
Slant Asymptote:

$$
x-1 \begin{array}{r}
\frac{8 x-2}{8 x^{2}-10 x+3} \\
\frac{-\left(8 x^{2}-8 x\right)}{-2 x+3} \\
-(-2 x+2)
\end{array} ~\left(\begin{array}{r}
1
\end{array}\right.
$$

slant asymptote $y=8 x-2$
12. $f(x)=\frac{2 x^{2}-7 x+3}{x^{2}-2 x-3}=\frac{(2 x-1)(x-3)}{(x / 3)(x+1)}$

$$
\text { Domain: }(-\infty,-1) \cup(-1,3) \cup(3, \infty)
$$

$$
\text { Holes): } \quad(3,5 / 4)
$$

Vertical Asymptotes): \qquad
y-intercept: $\quad(0,-1)$

$$
x \text {-intercept }(\mathrm{s}):\left(\frac{1}{2}, 0\right),(2,0) \text { not in dom }
$$

$$
\text { Horizontal Asymptotes): } y=2
$$

work:

Hole at $x=3 \rightarrow \frac{6-1}{3+1}=\frac{5}{4} \quad(3,5 / 4)$
$\begin{array}{ll}y \text { _int. } & \text { let } x=0 \rightarrow \frac{2(0)-1}{0+1}=\frac{-1}{1}=-1\end{array}$

Check
if $x \rightarrow-1^{-}$(from left) e.g. $-1.001 \Rightarrow \frac{2(-1.0)-1}{-1.001+1}=-\quad y \rightarrow+\infty$
if $x \rightarrow-1^{+}$(from right) e.g. $-0.999 \Rightarrow \frac{2(-0.999)-1}{-0.999+1}=\frac{-}{+}<0 \Rightarrow y \rightarrow-\infty$
sign chart $\underset{-1.01}{+_{x}^{+}} \underset{-1}{-}$

Horizontal Asymptote:

$$
\frac{\frac{2 x^{2}}{x^{2}}-\frac{7 x}{x^{2}}+\frac{3}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{2 x}{x^{2}}-\frac{3}{x^{2}}}=\frac{2-\frac{7}{x}+\frac{3}{x^{2}}}{1-\frac{2}{x}-\frac{3}{x^{2}}}
$$

as $x \rightarrow \infty \quad \frac{7}{x}, \frac{3}{x^{2}}, \frac{2}{x}$ \& $\frac{3}{x^{2}}$ all approach zero so $f(x) \rightarrow \frac{2-0}{1-0}=2$
$\Rightarrow \quad y=2$
13. Solve for v in the following equation.

$$
\begin{aligned}
& \left|\frac{(v+4)(v+5)}{v^{2}-1}\right|=1 \quad \text { Domain : } \\
& \text { (1) } \frac{(v+4)(v+5)}{v^{2}-1}=1 \\
& v^{2}+9 v+20=v^{2}-1 \\
& v^{2}+9 v+20=-v^{2}+1 \\
& 9 v+20=-1 \\
& \begin{array}{c}
2 v^{2}+9 v+19=0 \\
v=\frac{-9 \pm \sqrt{81-4(2)(19)}}{4}
\end{array} \\
& 9 v=-21 \\
& v=\frac{-7}{3} \\
& \text { (2) } \frac{(v+4)(v+5)}{v^{2}-1}=-1 \\
& \begin{array}{c}
2 v^{2}+9 v+19=0 \\
v=\frac{-9 \pm \sqrt{81-4(2)(19)}}{4}
\end{array} \\
& V=-9 \pm \sqrt{81-152} \\
& 4 \\
& \text { No solution }
\end{aligned}
$$

14. For the following function, state the domain, identify the intercepts, analyze the end behavior and sketch the graph.

$$
\begin{aligned}
& h(x)=\sqrt{x+3}(1+3 x)^{\frac{-1}{5}}= \frac{\sqrt{x+3}}{(1+3 x)^{\frac{1}{5}}} \\
& x \geq-3
\end{aligned}
$$

Domain:

$$
x \in\left[-3,-\frac{1}{3}\right) \cup\left(-\frac{1}{3}, \infty\right)
$$

$$
x \text {-int: } x=0 \rightarrow h(0)=\frac{\sqrt{3}}{1}=\sqrt{3} \quad(0, \sqrt{3})
$$

$$
y \text {-int: } y=0 \rightarrow 0=\frac{\sqrt{x+3}}{(1+3 x)^{1 / 5}} \rightarrow \sqrt{x+3}=0 \rightarrow x=-3 \quad(-3,0)
$$

$$
\begin{aligned}
& \text { Vertical Asy. at } x=-\frac{1}{3} \stackrel{f}{\leftarrow} \stackrel{-1}{\frac{-1}{2}-\frac{1}{3} \frac{-1}{5}} \frac{\sqrt{-\frac{1}{2}+3}}{\left(1-\frac{3}{2}\right)^{\frac{1}{5}}}=\frac{+}{-}<0 \text { so as } x \rightarrow-\frac{1}{3}+f(x) \rightarrow+\infty \\
& \text { End behavior } \\
& \frac{\sqrt{-\frac{1}{5}+3}}{\left(1-\frac{3}{5}\right)^{\frac{1}{5}}}=\frac{+}{+}>0 \text { as } x \rightarrow-\frac{1}{3}^{-}, f(x) \rightarrow-\infty
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{x+3}}{(1+3 x)^{\frac{1}{5}}}=\frac{\frac{\sqrt{x+3}}{(3 x)^{\frac{1}{5}}}}{\left(\frac{1}{3 x}+1\right)^{\frac{1}{5}}}=\frac{\sqrt{\frac{x}{(3 x)^{\frac{2}{5}}}+\frac{3}{(3 x)^{5}}}}{\left(\frac{1}{3 x}+1\right)^{\frac{1}{5}}} \\
& =\frac{\sqrt{\frac{x^{3 / 5}}{(3)^{2 / 5}}+\frac{3}{(3 x)^{5}}}}{\left(\frac{1}{3 x}+1\right)^{\frac{1}{5}}} \\
& \text { as } x \rightarrow \infty \quad \frac{3}{(3 x)^{\frac{2}{5}}} \text { \& } \frac{1}{3 x} \text { approach zero } \\
& \text { but } \frac{x^{\frac{3}{5}}}{3^{2 / 5}} \longrightarrow \infty
\end{aligned}
$$

15. Solve $\sqrt{t^{4}+9}=\sqrt{6} t$ for t.
square both sides

$$
\begin{aligned}
& t^{4}-6 t^{2}+9=0 \\
& \left(t^{2}-3\right)^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
t^{2}=3 \rightarrow t & =\sqrt{3} \\
t & =-\sqrt{3}
\end{aligned}
$$

16. Find the intervals where the following inequality is true. $2 x(2 x-3)^{-2} \leq 4(2 x-3)^{-3}$

$$
\begin{aligned}
& \text { Domain restriction } \quad 2 x-3 \neq 0 \quad x \neq \frac{3}{2} \\
& x \in\left(-\infty, \frac{3}{2}\right) \cup(3, \infty)
\end{aligned}
$$

$$
\frac{2 x}{(2 x-3)^{2}} \leqslant \frac{4}{(2 x-3)^{3}}
$$

$$
x \in\left(-\infty, \frac{3}{2}\right) \cup\left(\frac{3}{2}, \infty\right)
$$

$$
\frac{2 x}{(2 x-3)^{2}}-\frac{4}{(2 x-3)^{3}} \leq 0
$$

$$
y=\frac{2 x}{(2 x-3)^{2}}-\frac{4}{(2 x-3)^{3}}=0
$$

$$
\begin{aligned}
& \text { multiply } \\
& \text { by } L D \Rightarrow \\
& \\
& \\
& \\
& 4 x^{2}-6 x-4=0
\end{aligned}
$$

we want $y \leqslant 0$

$$
x \in\left(-\infty,-\frac{1}{2}\right] \cup\left(\frac{3}{2}, 2\right]
$$

17. Given $f(x)=\frac{-3 x+4}{x-2}$ is a one-to-one function, compute $f^{-1}(x)$ and state domain and range of $f(x)$ and $f^{-1}(x)$.

Domain of $f(x) \quad x \in(-\infty,+2) \cup(2, \infty) \Rightarrow$ Range of $f^{-1}(x)$
Range of $f(x) \quad x \in(-\infty,-3) \cup(-3, \infty)<=$ Domain of $f^{-1}(x)$

$$
\begin{aligned}
y=\frac{-3 x+4}{x-2} \rightarrow y x-2 y & =-3 x+4 \rightarrow y x+3 x=4+2 y \\
x(y+3) & =4+2 y \\
x & =\frac{4+2 y}{y+3} \\
\Rightarrow f^{-1}(x) & =\frac{4+2 x}{x+3}
\end{aligned}
$$

Check both $f\left(f^{-1}(x) \stackrel{?}{=} x \quad\right.$ \& $f^{-1} \circ f(x) \stackrel{?}{=} x$

$$
\begin{aligned}
& \left.\begin{array}{l}
(f \circ g)(x)=\frac{-3\left(\frac{2 x+4}{x+3}\right)+4}{\frac{2 x+4}{x+3}-2}=\frac{\frac{-6 x-12}{x+3}+\frac{4 x+12}{x+3}}{\frac{2 x+4-2 x-6}{x+3}}=\frac{\frac{-2 x}{x+3}}{\frac{-2}{x+3}}= \\
\\
\text { checking the other side: }
\end{array} \quad \frac{-2 x}{x+3} \cdot \frac{x+3}{-2}=\frac{-2 x}{-2}=x\right]
\end{aligned}
$$

$$
(g \circ f)(x)=\frac{2\left(\frac{-3 x+4}{x-2}\right)+4}{\left(\frac{-3 x+4}{x-2}\right)+3}=\frac{\frac{-6 x+8}{x-2}+4}{\frac{-3(x+4+3 x-6}{x-2}}=\frac{\frac{-6 x+8+4 x-8}{x-2}}{\frac{-2}{x-2}}=\frac{-2 x}{x-2} \cdot \frac{x-2}{-2}
$$

18. Describe the transformations) of the graph of $f(x)=3^{x}$ that yields) the graph of $g(x)=3^{-0.7 x}+1$, then choose the graph that matches the function.

Transformations:
(1) Horizontal stretch (by $\frac{1}{0.7}$ units)
2. Reflect over y-axis
(3) vertical shift up 1

Domain: $\quad x \in(-\infty, \infty)$
x-intercepts): None $3^{-0.7 x}=-1 \rightarrow \ln (3)^{-0.7 x}=\ln (-1) \rightarrow$ No solution
y-intercepts): let $x=0 \quad g(0)=1+1=2 \quad(0,2)$

Horizontal Asymptotes): $y=1$

If $g(x)$ is composition of two functions, $f(x)=3^{x}$ and $h(x)$ such that $g(x)=h(f(-0.7 x))$. Find $h(x) . \quad f(x)=3^{x} \rightarrow f(-0.7 x)=3^{-0.7 x}$

$$
h(x)=x+1 \quad h(f(-0.7 x))=h\left(3^{-0.7 x}\right)=3^{-0.7 x}+1
$$

19. Describe the transformations of $f(x)=\log _{2}(x)$ that yield $g(x)=-\log _{2}(x-4)+2$. Then state the domain, x-intercept, and vertical asymptote of the logarithmic function $f(x)$, then choose the graph that matches the function.

Transformations:
(1) Horizontal shift right 4
(2) Reflection w.r.t x-axis
(3) vertical shift

$$
\text { up } 2 \text { units }
$$

Domain: $\quad x-4>0 \quad x>4$

$$
x \in(4, \infty)
$$

x-intercep ts):

$$
\text { let } y=0 \quad 2=\log _{2}(x-4) \Longleftrightarrow \quad 2^{2}=x-4 \quad \rightarrow x=8 \quad(8,0)
$$

y-intercepts): let $x=0$ (we cant since zero is not in the domain)

Vertical Asymptote (s):

$$
x=4 \quad \text { (found by checking the transformations.) }
$$

20. Solve $\frac{15}{100+e^{2 x}}=3$ for x. Always check for extraneous solutions.

$$
\begin{aligned}
& \text { (Domain restriction } e^{2 x}+100=0 \\
& \left.e^{2 x}=-100 \rightarrow \text { No solution. since }\right) \\
& 15=3\left(100+e^{2 x}\right) \\
& e^{2 x}>0 \\
& 5=100+e^{2 x} \\
& -95=e^{2 x} \longrightarrow \text { No solutions }
\end{aligned}
$$

[note: $\ln \left(e^{2 x}\right)=\ln (\overbrace{-95)}^{\text {not in domain }}$
21. Use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms. (Assume all variables are positive.)
$\ln \sqrt[3]{\frac{x^{2}}{x^{2}-8 x-20}}=\ln \left(\frac{x^{2}}{(x-10)(x+2)}\right)^{\frac{1}{3}}$

\&
$x \neq 16$
$x \neq-2$
$=\ln \left(\frac{x^{2}}{x^{2}-8 x-20}\right)^{\frac{1}{3}}=\frac{1}{3}\left[\ln \left(\frac{x^{2}}{x^{2}-8 x-20}\right)\right]$
$=\frac{1}{3}\left[\ln x^{2}-\ln \left(x^{2}-8 x-20\right)\right]=\frac{1}{3}[2 \ln x-\ln ((x-10)(x+2))]$
$=\frac{1}{3}\left[2 \ln x-(\ln (x-10)+\ln (x+2)]=\frac{1}{3}(2 \ln x-\ln (x-10)-\ln (x+2))\right.$

