Math 150 - Week-In-Review 5
Sana Kazemi
Problem Statements

1. For the function $f(x)=2 x^{3}+5$ compute and simplify the difference quotient.

$$
\begin{aligned}
& f(x+h)=2(x+h)^{3}+5=2\left[x^{3}+h^{3}+3 x^{2} h+3 h^{2} x\right]+5=2 x^{3}+2 h^{3}+6 x^{2} h+6 h^{2} x+5 \\
& f(x+h)-f(x)=2 x^{3}+2 h^{3}+6 x^{2} h+6 h^{2} x+5-\left(2 x^{3}+5\right)=2 h^{3}+6 x^{2} h+6 h^{2} x \\
& \frac{f(x+h)-f(x)}{h}=\frac{2 h^{3}+6 x^{2} h+6 h^{2} x}{h}=2 h^{2}+6 x^{2}+6 h x
\end{aligned}
$$

2. For the function $g(x)=\sqrt{x-6}$ compute and simplify $\frac{g(a+\Delta x)-g(a)}{\Delta x}$

$$
\begin{gathered}
g(a)=\sqrt{a-6} \\
g(a+\Delta x)=\sqrt{a+\Delta x-6} \\
\frac{g(a+\Delta x)-g(a)}{}=\sqrt{a+\Delta x-6}-\sqrt{a-6} \\
\frac{g(a+\Delta x)-g(a)}{\Delta x}=\frac{\sqrt{a+\Delta x-6}-\sqrt{a-6}}{\Delta x} \cdot \frac{\sqrt{a+\Delta x-6}+\sqrt{a-6}}{\sqrt{a+\Delta x-6}+\sqrt{a-6}}
\end{gathered}
$$

$$
\begin{aligned}
=\frac{(a+\Delta x-6)-(a+\sqrt{6})}{\Delta x(\sqrt{a+\Delta x-6}+\sqrt{a-6})} & =\frac{\Delta x}{\Delta x(\sqrt{a+\Delta x-6}+\sqrt{a-6})} \\
& =\frac{1}{\sqrt{a+\Delta x-6}+\sqrt{a-6}}
\end{aligned}
$$

3. position of a particle is given by $h(t)=\frac{5 t}{t+4}$ feet after t seconds. Find the average velocity on the interval $[t, t+\Delta t]$.

$$
=\bar{a} \bar{b}
$$

ie. difference quotient

$$
\begin{aligned}
& \text { Ave. Veloce. }=\frac{h(b)-h(a)}{b-a}=\frac{h(t+\Delta t)-h(t)}{(t+\Delta t)-t}=\frac{h(t+\Delta t)-h(t)}{\Delta t} \\
& h(t+\Delta t)=\frac{5 t+5 \Delta t}{t+\Delta t+4} \\
& h(t+\Delta t)-h(t)=\frac{5 t+5 \Delta t}{t+\Delta t+4}-\frac{5 t}{t+4}=\frac{\text { Conman }}{\text { denom. }} \frac{(5 t+5 \Delta t)(t+4)-(5 t)(t+\Delta t+4)}{(t+\Delta t+4)(t+4)} \\
& =\frac{5 t^{2}+2 b t+5 t \Delta t+20 \Delta t-\left[5 t^{2}+5 t \Delta \Delta t+26 t\right]}{(t+\Delta t+4)(t+4)} \\
& \frac{h(t+\Delta t)-h(t)}{\Delta t}=\frac{\frac{20 \Delta t}{(t+\Delta t+4)(t+4)}}{\Delta t}
\end{aligned}
$$

4. Solve for h in the following equation.

$$
\left|\frac{1}{h+3}+2\right|=\left|\frac{2}{(h-1)(h+3)}\right|
$$

$$
\text { (1) } \frac{1}{h+3}+2=\frac{2}{(h-1)(h+3)}
$$

$$
\text { (2) } \frac{1}{h+3}+2=\frac{-2}{(n-1)(h+3)}
$$

$$
\begin{aligned}
& { }^{(h-1)(h+3)} \times\left(\frac{1}{h+3}+2\right)=\left(\frac{2}{(h-1)(h+3)}\right) \times(h-1)(h+3) \\
& { }^{(h-1)(h+3} \times\left(\frac{1}{h+3}+2\right)=\left(\frac{-2}{(h-1)(h+3)}\right) \times(h-1)(h+3) \\
& h-1+2(h-1)(h+3)=2 \\
& h-1+2(h-1)(h+3)=-2 \\
& h-1+2\left[h^{2}+2 h-3\right]=2 \\
& h-1+2 h^{2}+4 h-6=2 \\
& 2 h^{2}+5 h-7=2 \\
& 2 h^{2}+5 h-9=0 \\
& h=\frac{-5 \pm \sqrt{97}}{4} \\
& h-1+2\left[h^{2}+2 h-3\right]=-2 \\
& h-1+2 h^{2}+4 h-6=-2 \\
& 2 h^{2}+5 h-7=-2 \\
& 2 h^{2}+5 h-5=0 \\
& h=\frac{-5 \pm \sqrt{65}}{4}
\end{aligned}
$$

5. Solve for v in the following equation.

$$
\begin{gathered}
x(v+1)(v-1)\left[\begin{array}{l}
\frac{v+4}{v+1}-\frac{v+5}{v-1}=-1 \\
(v+4)(v-1)-(v+5)(v+1)=-(v-1)(v+1) \\
v^{2}+3 v-4-\left(v^{2}+6 v+5\right)=-v^{2}+1 \\
-3 v-4-5=-1, v \neq 1 \\
=-v^{2}+1 \\
v^{2}-3 v-10=0 \\
(v-5)(v+2)=0 \\
v=5 \\
v=-2
\end{array}\right.
\end{gathered}
$$

6. For the following function, state the domain, identify the intercepts, analyze the end behavior and sketch the graph.

$$
f(x)=\sqrt{(1+3 x)\left(1-x^{2}\right)}
$$

Domain $(1-3 x)\left(1-x^{2}\right) \geqslant 0 \Rightarrow x=1 / 3 \& 1 \quad<-1$

$$
x \in(-\infty,-1] \cup\left[-\frac{1}{3}, 1\right]
$$

x-into let $y=0 \longrightarrow x=\frac{-1}{3}, 1,-1 \quad(1,0)(-1,0)\left(\frac{-1}{3}, 0\right)$

Y_int. let $x=0 \sim \sqrt{(1+0)(1-0)}=\sqrt{1}=1 \quad(0,1)$

End behowior
as $x \rightarrow-\infty \quad f(x) \rightarrow \infty \quad$ (no Horiz. As.)
Note: $\sqrt{\pi} \geqslant 0$ so always above x-axis (no reflections writ. x-axis)

7. For the following function, state the domain, identify the intercepts, analyze the end behavior and sketch the graph.

$$
g(x)=\frac{2 x}{(1+3 x)^{\frac{1}{5}}}
$$

Domain: $1+3 x \neq 0 \quad x \neq-\frac{1}{3} \Rightarrow x \in\left(-\infty,-\frac{1}{3}\right) \cup\left(-\frac{1}{3}, \infty\right)$ Vertical Ass at $x=-\frac{1}{3}$

$$
\begin{aligned}
& x \text {-int } \rightarrow \text { let } y=0 \\
& y_{\text {_int }} \rightarrow \text { Let } x=0 \\
& \frac{2 x}{\sqrt{(1+3 x)}}=0 \rightarrow 2 x=0 \rightarrow(0,0) \\
& \frac{2(0)}{\sqrt{1+3(0)}}=0 \rightarrow(0,0)
\end{aligned}
$$

End behavior:

$$
\frac{2 x}{\sqrt[5]{1+3 x}} \stackrel{\text { leading term }}{\approx} \frac{2 x}{\sqrt[5]{3 x}}=\frac{2 x}{(3 x)^{\frac{1}{5}}}=\frac{2 x^{1-\frac{1}{5}}}{(3)^{\frac{1}{5}}}=\frac{2}{\sqrt[5]{3}} x^{\frac{4}{5}} \Rightarrow N_{0} \text { HA. }
$$

$$
=\frac{2 x}{\sqrt[5]{3 x}}=\frac{5 x^{4 / 5}}{\sqrt[5]{3}}
$$

$$
\begin{aligned}
& \leftarrow \begin{array}{ccc}
+\infty & + \\
-1 & -\frac{1}{3} & + \\
\hline
\end{array} \\
& g(-1)=\frac{-2}{\sqrt[5]{1-3}}=\frac{-2}{(-2)^{\frac{1}{5}}}=\frac{-}{-}=+ \\
& g(1)=\frac{2}{\sqrt[5]{1+3}}=+
\end{aligned}
$$

8. For the following function, state the domain, identify the intercepts, analyze the end behavior and sketch the graph.

$$
h(x)=\sqrt{x+3}(1+3 x)^{\frac{1}{5}}
$$

Domain:

$$
x \geq-3
$$

No
restriction

$$
\sqrt{3}(1+0)^{\frac{1}{5}}=\sqrt{3} \quad(0, \sqrt{3})
$$

x-int:

$$
x=0
$$

$$
y \text {-int.: } \quad y=0 \rightarrow x=-3 \quad \& \quad x=-\frac{1}{3}
$$

$$
\begin{gathered}
x \in[-3, \infty) \\
(0, \sqrt{3}) \\
\left(-\frac{1}{3}, 0\right) \\
(-3,0)
\end{gathered}
$$

End behavior
as $x \rightarrow \infty, f(x) \rightarrow \infty$

$$
\begin{aligned}
& 4 \int_{-3}-\frac{1}{4} \\
& h(-1)=\sqrt{2}(1-3)^{\frac{1}{5}}=\underset{\sim}{\sqrt{2}} \underset{-}{(-2)^{\frac{1}{5}}}<0 \\
& h(1)=\sqrt{4}(1+3)^{\frac{1}{5}}>0
\end{aligned}
$$

9. Write P as a function of t ie. Solve for P

$$
t=\frac{2+t^{2}}{\sqrt{3 p-8}}
$$

we should free the P

$$
\begin{aligned}
& t(\sqrt{3 p-8})=2+t^{2} \\
& t^{2}(3 p-8)=\left(2+t^{2}\right)^{2} \\
& t^{2}(3 p-8)=4+t^{4}+4 t^{2} \\
& 3 p-8=\frac{4+t^{4}+4 t^{2}}{t^{2}} \\
& 3 p-8=\frac{4}{t^{2}}+t^{2}+4 \\
& 3 p= \frac{4}{t^{2}}+t^{2}+12 \\
& p=\frac{4}{3 t^{2}}+\frac{t^{2}}{3}+4
\end{aligned}
$$

