Note $\sharp 3$: Sections 14.1-14.5

Problem 1. Find and sketch the domains of the following functions.
a) $f(x, y)=\ln (y-3 x)$
b) $f(x, y)=\frac{\sqrt{8-x^{2}-y^{2}}}{x+2 y}$

Problem 2. Sketch several level curves for the following surfaces:
a) $f(x, y)=2+4 x-y$
b) $f(x, y)=\sqrt{9-x^{2}-y^{2}}$

Problem 3. a) Describe the level surfaces of $f(x, y, z)=x+y+z$.
b) Describe the level surfaces of $f(x, y, z)=x^{2}+y^{2}+z^{2}$.

Problem 4. a) Find $f_{x}(-1,2)$ and $f_{y}(-1,2)$ for $f(x, y)=x^{3}-y^{4}-6 x^{2} y^{3}$.
b) Find $f_{x}(x, y)$ and $f_{y}(x, y)$ for $f(x, y)=x^{2} e^{\cos \left(2 x^{4} y^{2}\right)}$.

Problem 5. Find all second order partial derivatives for $f(x, y)=\ln (2 x+3 y)$.
Problem 6. Find the equation of the tangent plane to the surface $z=e^{x-y}$ at the point $(2,2,1)$.
Problem 7. Find the differential of $z=e^{-2 x} \sin (\pi y)$.
Problem 8. Use differentials to approximate $f(1.02,0.97)$ for $f(x, y)=1-x y \cos (\pi y)$.
Problem 9. The length and width of a rectangle are measured as 30 cm and 24 cm , respectively, with an error in measurement of 0.1 cm in both. Use differentials to approximate the maximum error in the calculated area of the rectangle.

Problem 10. a) If $z=\ln (9 x-6 y), x=\cos \left(e^{t}\right), y=\sin ^{3}(4 t)$, find $\frac{d z}{d t}$.
b) If $z=r^{3}+s+v^{2}, r=x e^{y}, s=y e^{x}, v=x^{2} y$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
c) If $u=x^{4} y+y^{2} z^{3}, x=2 r s+3 s t, y=r s^{2} t, z=r^{2} e^{2 t}$, find $\frac{\partial u}{\partial s}$ and $\frac{\partial u}{\partial t}$.
d) If $z=x^{4}+x y^{3}, x=u v^{3}+w^{4}, y=u+v e^{w}$, find find $\frac{\partial z}{\partial u}$ when $u=1, v=1, w=0$.

Problem 11. The height and radius of a right circular cone are changing with respect to time. If the base radius of the cone is increasing at a rate of $\frac{1}{4}$ inches per minute while the height is decreasing at a rate $\frac{1}{10}$ inches per minute, find the rate in which the volume if the cone is changing when the radius of the cone is 2 inches and the height of the cone is 1 inch.

Problem 12. The length l, width w and height h of a box change with time. At a certain instant, the dimensions are $l=1 \mathrm{~m}, w=3 \mathrm{~m}$ and $h=2 \mathrm{~m}$, and l and w are increasing at rate of $2 \mathrm{~m} / \mathrm{s}$ while h is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$. At that same instant, find the rate at which the surface area is changing.

Problem 13. Find $d y / d x$.
a) $y \cos x=x^{2}+y^{2}$
b) $e^{y} \sin x=x+x y$

Problem 14. Find $\partial z / \partial x$ and $\partial z / \partial y$.
a) $x^{2}+2 y^{2}+3 z^{2}=1$
b) $y z+x \ln y=z^{2}$

