Week-in-Review 1 (1.3, 1.4)

Problem 1. Answer the following questions based on the graph of $f(x)$ below:

(1) Use the definition of continuity to show that f is continuous at $x=-2$.
(2) Why is f not continuous at $x=-1$?
(3) Why is f not continuous at $x=0$?
(4) Why is f not continuous at $x=1$?

Problem 2. Find the Domain of the following functions and use that information to determine where the function is not continuous.
(1) State the Rules of Domains
(2) $f(x)=\frac{\sqrt{6 x^{2}+11 x-7}}{x^{2}-5 x+6}$
(3) $f(x)=\frac{\sqrt{3 x-2}}{6 x^{2}+8 x-30}$
(4) $f(x)=\frac{e^{5-x}}{\sqrt{x-4}}$
(5) $f(x)=e^{\left(\frac{x+1}{5 x^{2}-10 x}\right)}$
(6) $f(x)=\frac{\log _{7}(x-12)}{\sqrt{x+5}}$
(7) $f(x)=\frac{7 x^{2}+11 x^{3}}{\ln (x+8)}$
(8) $f(x)=\frac{x^{2}+4 x-21}{x^{2}+10 x+25}$
(9) $f(x)=\frac{\sqrt[5]{x^{3}-2 x}-\sqrt[6]{x+10}}{3^{4-x^{2}}}$
(10) $f(x)=\frac{x+2}{(x+12)(x+2)}$
(11) $f(x)=\frac{\log _{2}(x+3)}{11+\sqrt{x+5}}$

Problem 3. Find any vertical asymptotes and holes for the function

$$
f(x)=\frac{5(x-a)(x-b)^{2}(x-c)}{x^{2}(x-a)^{2}(x-b)}
$$

Problem 4. For what value(s) of x is the piecewise function $f(x)$ given below not continuous?

$$
f(x)= \begin{cases}3 x+1 & \text { if } x<-2 \\ \frac{x^{2}-5}{x-1} & \text { if }-2 \leq x \leq 3 \\ \frac{x^{3}-25}{x-2} & \text { if } x>3\end{cases}
$$

Problem 5. Find the value of A so that the piecewise function $f(x)$ given below is continuous.

$$
f(x)= \begin{cases}\frac{x^{2}-x-20}{x+4} & x<-4 \\ A x^{3}-2 e^{x+4}+8 & x \geq-4\end{cases}
$$

Problem 6. Find any holes and asymptotes for the given functions. Use limit notation to describe infinite and end point behavior.
(1) $f(x)=\frac{x^{2}-8 x+16}{x^{2}-4 x}$
(2) $f(x)=a x^{2}-b x^{5}+c x^{3}+d x-15$ where a, b, c, d are constants and >0.

Problem 7. Find any horizontal asymptotes for the functions below. If there are none, use limit notation to describe the end point behavior.
(1) $f(x)=\frac{2 x^{3}+x^{2}-1}{5 x^{3}-7 x+2}$
(2) $f(x)=\frac{4+3 e^{x}}{3+e^{-x}}$
(3) $f(x)=\frac{3 e^{x}+e^{-x}}{e^{x}-4 e^{-x}}$
(4) $f(x)=\frac{e^{2 x}-7 e^{-3 x}}{6 e^{3 x}-2 e^{-3 x}}$

