

Note #6: Sections 15.6-15.8

Problem 1. Let *E* be the region bounded by $y = x^2$ and $x = y^2$ and z = 0 and z = 5x + 5y. Compute $\iiint_E 4xy \, dV$. Just set up without evaluation.

Problem 2. Evaluate the triple integral $\iiint_T y^2 dV$, where T is the solid tetrahedron with vertices (0,0,0), (2,0,0), (0,2,0), and (0,0,2).

Problem 3. Evaluate $\iiint_E \sqrt{y^2 + z^2} \, dV$, where *E* is the solid between the elliptic paraboloids $x = y^2 + z^2$ and $x = 18 - y^2 - z^2$.

Problem 4. Express $\iiint_E f(x, y, z) dV$ in the order dy dz dx if E is the solid bounded by $y = x^2$, z = 0, y + 4z = 16.

Problem 5. Rewrite the integral as an equivalent iterated integral in the five other orders.

$$\int_0^1\int_{\sqrt{x}}^1\int_0^{1-y}f(x,y,z)dzdydx$$

Problem 6. (a) Plot the point whose cylindrical coordinates are $(\sqrt{2}, 3\pi/4, 2)$. Then find the rectangular coordinates of the point.

(b) Change from rectangular to cylindrical coordinates of the point $(-2, 2\sqrt{3}, 3)$.

Problem 7. Convert
$$\int_{-2}^{0} \int_{0}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} xz \, dz \, dy \, dx$$
 to cylindrical coordinates.

Problem 8. Find the volume of the sold that is above the xy plane, below the ellipsoid $4x^2 + 4y^2 + z^2 = 64$ but inside the cylinder $x^2 + y^2 = 9$.

Problem 9. Find the volume of the solid that is enclosed by the cylinder $x^2 + y^2 = 9$ and the planes y + z = 12 and z = 2.

Problem 10. (a) Plot the point whose spherical coordinates are $(4, -\pi/4, \pi/3)$. Then find the rectangular coordinates of the point.

(b) Change from rectangular to spherical coordinates of the point $(-1, 1, -\sqrt{2})$.

Problem 11. Convert $\int_{-3}^{3} \int_{0}^{\sqrt{9-y^2}} \int_{0}^{\sqrt{9-x^2-y^2}} z\sqrt{x^2+y^2+z^2} dz dx dy$ to spherical coordinates.

Problem 12. Using spherical coordinates, find the volume of the part of the ball $\rho \leq 3$ that lies between the cones $\phi = \frac{\pi}{6}$ and $\phi = \frac{\pi}{3}$.

Problem 13. Evaluate $\iiint_E z^2 dV$, where *E* is bounded by the *xy*-plane and the hemispheres $z = \sqrt{1 - x^2 - y^2}$ and $z = \sqrt{9 - x^2 - y^2}$.