Note $\sharp 6$: Sections 15.6-15.8
Problem 1. Let E be the region bounded by $y=x^{2}$ and $x=y^{2}$ and $z=0$ and $z=5 x+5 y$. Compute $\iiint_{E} 4 x y d V$. Just set up without evaluation.
Problem 2. Evaluate the triple integral $\iiint_{T} y^{2} d V$, where T is the solid tetrahedron with vertices $(0,0,0),(2,0,0),(0,2,0)$, and (0, 0, 2).
Problem 3. Evaluate $\iiint_{E} \sqrt{y^{2}+z^{2}} d V$, where E is the solid between the elliptic paraboloids $x=y^{2}+z^{2}$ and $x=18-y^{2}-z^{2}$.
Problem 4. Express $\iiint_{E} f(x, y, z) d V$ in the order $d y d z d x$ if E is the solid bounded by $y=x^{2}$, $z=0, y+4 z=16$.

Problem 5. Rewrite the integral as an equivalent iterated integral in the five other orders.

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x
$$

Problem 6. (a) Plot the point whose cylindrical coordinates are $(\sqrt{2}, 3 \pi / 4,2)$. Then find the rectangular coordinates of the point.
(b) Change from rectangular to cylindrical coordinates of the point $(-2,2 \sqrt{3}, 3)$.

Problem 7. Convert $\int_{-2}^{0} \int_{0}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2} x z d z d y d x$ to cylindrical coordinates.
Problem 8. Find the volume of the sold that is above the $x y$ plane, below the ellipsoid $4 x^{2}+4 y^{2}+$ $z^{2}=64$ but inside the cylinder $x^{2}+y^{2}=9$.

Problem 9. Find the volume of the solid that is enclosed by the cylinder $x^{2}+y^{2}=9$ and the planes $y+z=12$ and $z=2$.

Problem 10. (a) Plot the point whose spherical coordinates are $(4,-\pi / 4, \pi / 3)$. Then find the rectangular coordinates of the point.
(b) Change from rectangular to spherical coordinates of the point $(-1,1,-\sqrt{2})$.

Problem 11. Convert $\int_{-3}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y$ to spherical coordinates.
Problem 12. Using spherical coordinates, find the volume of the part of the ball $\rho \leq 3$ that lies between the cones $\phi=\frac{\pi}{6}$ and $\phi=\frac{\pi}{3}$.
Problem 13. Evaluate $\iiint_{E} z^{2} d V$, where E is bounded by the $x y$-plane and the hemispheres $z=\sqrt{1-x^{2}-y^{2}}$ and $z=\sqrt{9-x^{2}-y^{2}}$.

