Math 150 - Week-In-Review 1
Sana Kazemi

Problem Statements

1. Consider the function

$$
h(x)= \begin{cases}-2 x+4 & , \text { if } x \leq-1 \\ (x-2)^{2} & , \text { if } x>-1\end{cases}
$$

Find $h(-2), h(-1)$, and $h(2)$.

$$
h(-2)=-2(-2)+4=4+4=8
$$

$$
h(-1)=-2(-1)+4=6
$$

$$
h(2)=(2-2)^{2}=0
$$

2. Find an equation of the line through the points $(3,9)$ and $(-7,1)$ in standard form.

$$
\begin{aligned}
& \text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-(9)}{-7-3}=\frac{-8}{-10}=\frac{4}{5} \\
& y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. Find an equation of the line through the points }(3,9) \text { and }(3,-2) \text {. }
\end{aligned}
$$

4. Find an equation of the line through the points $(3,9)$ and $(-1,9)$.

$$
m=\frac{9-9}{3-(-1)}=\frac{0}{4}=0
$$

 straight line
5. Write an equation of a line a) parallel to and b) perpendicular to the line $5+x-2 y=0$ and passing through the point $(4,-3)$ in slope-intercept form. dunner
a) parallel


$$
\Rightarrow \text { same slope }
$$

$$
\begin{gathered}
\text { slope } \\
\downarrow \\
y=m x+b
\end{gathered}
$$

$$
\begin{aligned}
5+x=2 y \xrightarrow{5} \quad y & =\frac{5}{2}+\frac{x}{2} \\
y & \left.=\frac{x}{2}+\frac{5}{2} \right\rvert\, \Rightarrow \text { slope } m=\frac{1}{2}
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
\begin{aligned}
y-(-3)=\frac{1}{2}(x-4) \rightarrow y+3 & =\frac{1}{2} x-2 \\
y & =\frac{1}{2} x-5
\end{aligned}
$$

$$
\frac{1}{m}
$$

b) Perpendicular

$$
m=-2
$$

$$
\begin{gathered}
y-(-3)=-2(x-4) \\
y+3=-2 x+8 \\
y=-2 x+5
\end{gathered}
$$

6. Solve the following inequalities. Graph their solution set.

$$
\begin{aligned}
& \text { (a) } \frac{x}{2}-\frac{3}{5} \leq \frac{1-2 x}{10} \\
& \frac{x}{2}-\frac{3}{5} \leqslant \frac{1}{10}-\frac{x}{5} \\
& \frac{5}{5} \times \frac{x}{2}+\frac{x}{5} \times \frac{2}{2} \leq \frac{1}{10}+\frac{3}{5} \\
& \frac{5 x+2 x}{10} \leqslant \frac{1+6}{10} \\
& \frac{7 x}{10} \leqslant \frac{7}{10}->7 x \leqslant 7 \rightarrow x \leqslant 1 \\
& \text { (b) }-5 \leq \frac{1-4 x}{2}<7 \\
& -\frac{1}{2}\left[\begin{array}{l}
-5 \leqslant \frac{1}{2}-2 x<7 \\
-5-\frac{1}{2} \leqslant-2 x<7-\frac{1}{2}
\end{array}\right. \\
& \div-21 \longrightarrow \begin{array}{l}
\frac{-11}{2} \leqslant-2 x<\frac{13}{2} \\
\frac{+11}{+4} \geqslant x>\frac{13}{-4}
\end{array}
\end{aligned}
$$

(c) $|3 x-1|<11$

7. Simplify the following expression. Write your answer so that each variable appears at most once, and all exponents are positive.

$$
\frac{\frac{3}{15}\left(x y^{-1}\right)^{2}\left(x^{-2} y^{2}\right)^{3}}{5\left(x^{-1 / 2}\right)^{4}\left(x y^{-3}\right)^{-2}}
$$


8. Simplify each radical expression.
(a) $\sqrt[3]{\frac{16 x^{4} y^{2} z^{4}}{-27 x^{2} y^{83}}}$
$=\sqrt[3]{\frac{16 x^{2} z^{4}}{-27 y^{3}}}=\sqrt[3]{\frac{2^{3} \times 2 x^{2} z^{3} \cdot z}{(-3)^{3} y^{3}}}$

$$
=\frac{2 z}{-3 y} \sqrt[3]{2 x^{2} z}
$$

(b) $\sqrt{x^{3}}+\sqrt{4 x^{3}}-\sqrt{8 x}$
$\sqrt{x^{2}}=|x|$
$=\sqrt{x^{2} x}+\sqrt{2^{2} x^{2} \cdot x}-\sqrt{4.2 x}$
$=|x| \underbrace{\sqrt{x}}+2|x| \underbrace{\underbrace{\sqrt{x}}}_{\sqrt{x} \sqrt{x}}$
$=\sqrt{x}(|x|+2|x|-2 \sqrt{2})=\sqrt{x}(3|x|-2 \sqrt{2})$
9. Rationalize the denominator.
(a) $\begin{aligned} \frac{5-z}{\sqrt{5}+\sqrt{z}} \cdot \frac{\underbrace{\sqrt{5}-\sqrt{z}}_{11}}{\sqrt{\frac{\sqrt{z}}{2}}} & =\frac{(5-z)(\sqrt{5}-\sqrt{z})}{(\sqrt{5})^{2}-(\sqrt{z})^{2}} \\ =\frac{(5-z)(\sqrt{5}-\sqrt{z})}{5-z} & =\sqrt{5}-\sqrt{z} \\ & =(5)^{\frac{1}{2}}-(z)^{\frac{1}{2}}\end{aligned}$ Conjugate
$(a+b) \cdot(a-b)=a^{2}-b^{2}$
(b) $\frac{5 \sqrt{3}-3 \sqrt{2}}{2 \sqrt{3}+3 \sqrt{2}} \cdot \frac{2 \sqrt{3}-3 \sqrt{2}}{2 \sqrt{3}-3 \sqrt{2}}$

$$
\begin{aligned}
=\frac{(5 \sqrt{3}-3 \sqrt{2})(2 \sqrt{3}-3 \sqrt{2})}{(2 \sqrt{3})^{2}-(3 \sqrt{2})^{2}} & =\frac{(5 \sqrt{3})(2 \sqrt{3})+(5 \sqrt{3})(-3 \sqrt{2})-(3 \sqrt{2})(2 \sqrt{3})+(3 \sqrt{2})^{2}}{4 \times 3-9 \times 2} \\
& =\frac{30-15 \sqrt{6}-6 \sqrt{6}+18}{12-18}
\end{aligned} \begin{aligned}
& 48-21 \sqrt{6} \\
&=\frac{-6+\frac{7 \sqrt{6}}{2}}{}
\end{aligned}
$$

10. Simplify the following expression. Leave answer with rational exponents.

$$
\begin{aligned}
\left(\frac{a^{5 / 4} \cdot a^{-1 / 8}}{a^{1 / 4}}\right)^{8 / 3}= & \left.\frac{a^{5 / 4}}{a^{\frac{1}{4}}} \cdot a^{-\frac{1}{8}}\right)^{\frac{8}{3}} \\
& =\left(a^{\frac{5}{4}-\frac{1}{4}} \cdot a^{\frac{-1}{8}}\right)^{\frac{8}{3}} \\
& =\left(a^{\frac{4}{4}} \cdot a^{-\frac{1}{8}}\right)^{\frac{8}{3}} \\
& \left.=\left(a^{1} \cdot a^{-\frac{1}{8}}\right)^{\frac{8}{3}}=\left(a^{\frac{8-1}{8}}\right)^{\frac{8}{8}}\right)^{\frac{8}{3}} \\
& =\left(a^{\frac{7}{8} \cdot \frac{8}{3}}=a^{\frac{7}{3}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11. Factor each expression. } \\
& \text { (a) } \underbrace{x^{2} y^{2}}_{\text {(ny) }}-10 \text { xp })+25=(x y-5)^{2} \\
& t=x y \underbrace{t^{2}-10 t+25}_{=(t-5)(t-5)}=(t-5)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } 4 y^{2}-4 y-3 \longleftrightarrow(2 y)(2 y) \\
& =4\left[y^{2}-y-\frac{3}{4}\right] \\
& =4\left(y-\frac{3}{2}\right)\left(y+\frac{1}{2}\right)=2\left(y-\frac{3}{2}\right) 2\left(y+\frac{1}{2}\right) \\
& =(2 y-3)(2 y+1)
\end{aligned}
$$

(c) $(x+2)\left(x^{2}-8\right)+(x+2)^{2}(x-1)$

> 12. Find the domain of each expression.
(a) $f(x)=x^{2}-10 x+18$

$$
\text { Poly } \rightarrow \mathbb{R} \quad(-\infty, \infty)
$$

$$
\begin{aligned}
& \text { (b) } \frac{7 x+1}{9 x^{2}-3} \quad 9 x^{2}-3 \neq 0 x^{2} \neq 3 \rightarrow x^{2} \neq \frac{1}{3} \\
& x \neq \pm \sqrt{\frac{1}{3}}= \pm \frac{1}{\sqrt{3}} \\
& x \neq \pm \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}= \pm \frac{\sqrt{3}}{3} \\
& \xrightarrow{-\infty} \stackrel{-\sqrt{3} / 3}{\stackrel{\sqrt{3}}{\sqrt{3} / 3} \infty} \\
& x \in\left(-\infty,-\frac{\sqrt{3}}{3}\right) \cup\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right) \cup\left(\frac{\sqrt{3}}{3}, \infty\right) \\
& \text { (c) } \frac{\sqrt{1-2 x}}{x^{2}-5 x} \quad \begin{array}{l}
x^{2}-5 x \neq 0 \\
x(x-5) \neq 0 \rightarrow \underset{x-5 \neq 0}{x \neq 5} \sqrt{x \neq 5}
\end{array} \\
& \rightarrow x^{2}-5 x \neq 0 \leadsto x(x-5) \neq 0 \sim \underset{x \neq 0}{x \neq 5}+\infty \\
& 1-2 x \geqslant 0 \Rightarrow 1 \geqslant 2 x \rightarrow x \leqslant \frac{1}{2} \\
& x \in(-\infty, 0) \cup\left(0, \frac{1}{2}\right]
\end{aligned}
$$

13. Perform the operations and simplify.
$2\left(x^{2}-\frac{5}{2}+\frac{3}{2}\right)$
(a) $\int \underbrace{\frac{2 x^{2}-5 x-3}{6 x^{2}+3 x}} \cdot \frac{3 x^{2}+12 x-15}{x^{2}+2 x-15} \longleftarrow \underbrace{(x+5)}(x-1)$
$=\frac{2(x-1)\left(x-\frac{3}{2}\right) \cdot 3(x+5)(x-1)}{36 x(2 x+1)(x-5)(x+3)}=\frac{2(x-1)^{2}\left(x-\frac{3}{2}\right)}{x(2 x+1)(x+3)}$

2
(b) $\frac{x^{2}+5 x-14}{x^{2}+8 x+7} \div \frac{x^{2}-x-2}{x-3}=\frac{x+5 x-14}{x^{2}+8 x+7} \cdot \frac{x-3}{x^{2}-x-2}$
$=\frac{(x+7)(x+2)}{(x+7)(x+1)} \cdot \frac{(x-3)}{(x-2)(x+1)}=\frac{(x+2)(x-3)}{(x+1)^{2}(x-2)}$
(c) $\frac{x+2}{x^{2}-2 x-8}-\frac{x-2}{x^{2}-4}=\frac{1}{x-4}-\frac{1}{x+2}$ $\overbrace{(x-4)(x+2)}^{(x-2)(x+2)}$
$=\frac{(x+2)-(x-4)}{(x-4)(x+2)}=\frac{x+2-x+4}{(x-4)(x+2)}=\frac{6}{(x-4)(x+2)}$
(d) $\frac{\frac{2 x}{2 \times}}{} \frac{\frac{1}{x}-\frac{1}{2 x^{2}}}{\frac{2}{x}-1 \cdot \frac{\mathbf{x}}{x}}$

$$
=\frac{2 x^{2}}{\frac{2-x}{x}}
$$

$$
\frac{2 x-1}{2 x^{2}} \cdot \frac{*}{2-x}
$$

$$
=\frac{(2 x-1)}{2 x(2-x)}
$$

14. Determine whether the function is even, odd, or neither. Then describe the symmetry.
(a) $f(x)=\frac{x\left(x^{2}-1\right)}{5 x^{4}+1}$

(b) $g(x)=\sqrt[3]{x^{2}-1}$
(c) $h(x)=\frac{x^{3}-1}{x^{4}+2}$
15. If $h(x)=\frac{3 x}{2}+1$ evaluate the following:
(a) $h(a)$

(b) $h(a+b)$
(c) $\frac{h(a+b)-h(a)}{b}$
