1 Week 14 HOGU: 6.1, Final Exam Review Part 1

Problem 1. Consider the following scenario:
You want to have $\$ 30,000$ in your retirement fund. You currently have $\$ 10,000$ to invest for retirement in an account that earns 2.4% quarterly interest, companded quarterly.
How long would it take for you, in years, to end up with $\$ 30,000$ in your account?
TVM Solver

$$
\begin{aligned}
& N=? \\
& I \%=2.4 \\
& P V=-10000 \\
& P M T=0
\end{aligned}
$$

$$
\begin{array}{ll}
F V=30000 & N=183.65 \text { quarters } \\
P / Y=4 & \rightarrow 45.9 \text { yeas } \\
C / Y=4 & \text { or } 46 \text { years } \\
\text { MT: END BEGIN }
\end{array}
$$

Problem 2. You are purchasing new furniture from a local retailer. The
New furniture price is $\$ 12,500$, and the retailer offers financing options A and B. page Af

After 10 years, if you have not paid anything on the loan, how much interest
have you accrued using each loan option? Total owed
(a) $9.7 \% \mathrm{APR}$, compounded monthly

$$
\begin{array}{lll}
\text { (a) } N=120 & F V=? \rightarrow-32845.48 \\
I \%=9.7 & P / V=12 & N=3650 \\
I V V=? \\
P V=12500 & C / Y=12 & I \%=9.67 \\
P / Y=365 \\
P M T=0 & P M T: E N D & P V=12500 \quad C / Y=365 \\
& P M T=0 & P M T: E N D
\end{array}
$$

(b) 9.65% APR, compounded daily

Which one is the better financing option?

Q: What is the APY for each financing option?
(a) $10.14 \% \mathrm{APY}$
(b) 10.15% AP

WEEK 14 HOGU: 6.1, FINAL EXAM REVIEW PART 1
$\left.\begin{array}{l}\text { Problem 3. Let } A=\left[\begin{array}{ll}4 & 2 \\ a & b\end{array}\right]-c\end{array}\right], B=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, and $C=\left[\begin{array}{ccc}-3 & 4 & 0 \\ 5 & -8 & 1\end{array}\right]$. Only $\left[\begin{array}{cc}-3 & 5 \\ 4 & -8 \\ 0 & 1\end{array}\right]$ products exists below.
$A C^{T} B \quad A C B^{T}$
Then calculate below the matrix product you circled.

$$
\begin{aligned}
& A C^{\top} B \text { exists! } \\
& 2 \times 2,2 \times 3,3 \times 1 \\
& \left.\begin{array}{l}
2 \times 2,2 \times 3 x \\
a \\
4 \\
4 \\
b-c
\end{array}\right]\left[\begin{array}{ccc}
-3 & 4 & 0 \\
5 & -8 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& 2 \times 23 \times 21 \times 3 \\
& \lfloor x\rfloor[x] \\
& \text { inner dimensions do not } \\
& \text { agree! } \\
& {\left[\begin{array}{ccc}
-12+10 & 16-16 & 0+2 \\
-3 a+5(b-c) & 4 a-8(b-c) & b-c
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-2 & 0 & 2 \\
-3 a+5 b-5 c & 4 a-8 b+y_{c} & b-c
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{c}
-2+0+6 \\
-3 a+5 b-5 c+8 a-16 b+16 c+3 b-3 c
\end{array}\right]=\left[\begin{array}{c}
4 \\
5 a-8 b+8 c
\end{array}\right]}
\end{aligned}
$$

Problem 4. At Texas A\& M, each Math 140 has to pay $\$ 21$ for a WebAssign subscription and $\$ 81$ for a TI- 84 calculator.

Each Math 151 student has to pay $\$ 125$ for a WebAssign subscription and $\$ 81$ for a TI-84 calculator.

Each Math 251 student has to pay $\$ 100$ for a Web Assign subscription
(a) Set up the information above in a 222 matrix A, labeling each row and and $\$ 0$ column with the information giver. $2 \times$ Ease the column labels: " 140 " forfo-a TL a Math-140 students, "151" for Math-151 students, "WA" for WebAssign Calenletor. subscriptions, and "TI" for TI-84 calculators.
(b) In the fall semester, 4100 sty dents enroll in Math 140 , white 3200 students enroll in Math 151. Set this information up as a 2×1 matrix B, labeling each row and column with the information give 3×1
spinets curved

$$
\left.\begin{array}{l|l}
140 \\
151 & 4100 \\
351 \\
3200 \\
15000
\end{array}\right]
$$

(c) Calculate $A B$. What is the meaning of each entry in the product matrix $A B$?

$$
\left[\begin{array}{l}
21.4100+125.3200+100.1500 \\
81.4100+81.3200+0.1500
\end{array}\right]=\left[\begin{array}{l}
636100 \\
591300
\end{array}\right.
$$

$\$ 636100$ =ament of may stents in 190, 55,251 spoudin Vobistsign $\$ 591300=$ amount of many stuluhts in $140,151,251$ seat en $15-84 \mathrm{~s}$

Problem 5. Write the equations for each of the lines A, B, C, and D in slope-intercept form. Use fractions, not decimals, in your answers.

$$
\begin{aligned}
& \text { A: harireatal line: slope }=0 \quad y=3 \\
& y \text {-intreept: }(0,3)
\end{aligned}
$$

$\frac{y \text {-interest }}{(0,2)}$
B: two points $(0,2)+(4,0)$ slope-inturap + form
Slope: $\frac{0-2}{4-0}=\frac{-2}{4}=-\frac{1}{2}$

$$
y=-\frac{1}{2} x+2
$$

C: two points $(0,0)+(1,2)$ slope - intercept form
slope: $\frac{2-0}{1-0}=\frac{2}{1}=2$

$$
y=2 x
$$

${ }^{D}$ vertical line: slope undefined!

$$
x=5
$$

1 WEEK 14 HOGU: 6.1, FINAL EXAM REVIEW PART 1

Problem 6. For what value of k does the system of linear equations

$$
\begin{aligned}
6 x-k y & =24 \\
-2 x+8 y & =24
\end{aligned}
$$

have no solution?
Lines must be paralld!
Same slope.

Inconsistent system: no solution
-Start by finding slope of each Ire.

$$
\begin{aligned}
& \begin{array}{l}
6 x-k y=24 \\
-24+k y-24+k y
\end{array} 6 x-24=k y \rightarrow y=\frac{6}{k} x-\frac{24}{k} \\
& -24+k y-24+h y \\
& \text { close: } \frac{6}{x} \\
& -2 x+8 y=24 \longrightarrow 8 y=2 x+24 \rightarrow y=\frac{1}{4} x+3 \\
& +2 x \\
& \text { slope: } \frac{1}{4}
\end{aligned}
$$

equality: $\frac{6}{k}=\frac{1}{4} \rightarrow k=24$

$$
\begin{aligned}
6 x-24 y & =24 \\
-2 x+8 y & =24 \text { the }
\end{aligned}
$$

Problem 7. Use the RREF function in your calculator to calculate all solutrons to the system of linear equations.

$$
\left[\begin{array}{ccc|c}
4 x-\begin{array}{r}
y+z=5 \\
2 y+6 z=30 \\
x+z=5
\end{array} \\
0 & -1 & 1 & 5 \\
0 & 2 & 6 & 30 \\
1 & 0 & 1 & 5
\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{lll|l}
1 & 0 & 1 & 5 \\
0 & 1 & 3 & 19 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Zero rowstro catialitions \rightarrow Infinitely many solutions!
$(0=1)$
Convert in to system: let $z=t$

$$
\begin{aligned}
& x+\begin{aligned}
z & =5 \\
y+3 z & =15 \\
z & =t \quad
\end{aligned} \quad \begin{array}{l}
x=5-z=5-t \\
y=15-3 z=15-3 t \\
z
\end{array}=t \\
&(s-t, 15-3 t, t)
\end{aligned}
$$

- fort a real number

Problem 8. The corner points of a bounded feasible region in quadrant I are $(8,0),(0,10),(6,2)$, and $(3,4)$. What are the maximum and minimum values of $P=4 x+y$ on this feasible region?

Problem 9. Is the given simplex tableau in final form? If it is in final form, state the answer. If not, identify the pivot element.

Bottom row:

$$
\begin{array}{ccccccc|c}
x & y & z & s_{1} & s_{2} & s_{3} & P & \text { constant } \\
{\left[\begin{array}{ccccccc}
1 & 2 & 0 & 1 & 0 & 0 & 0 \\
2 & 0 & 4 & 0 & 1 & 0 & 0 \\
28 \\
0 & -1 & 1 & 0 & 0 & 1 & 0 \\
\hline-2 & -5 & -3 & 0 & 0 & 0 & 1
\end{array}\right) 0} \\
28 / 2 \\
16 / 0 \\
0 /-1
\end{array}
$$

Most negative entry $=-5$ column 2 Ratio $\frac{\text { constant }}{\text { column } 2}$:
Least positive entry: $\frac{28}{2}$ row 1 (divide by position numbers ONLY)

Pivot on " 2 " in row 1, column 2

Problem 10. (a) Set up but do not solve the following linear programming problem:
They also ${ }^{\circ 0 \mathrm{~N}}$ The Texas A\&M Rec Center has a rock climbing pass that sells for to sell al leas $\$ 50$ a month and a general gym pass that sells for $\$ 80$ a month. The rec center calculates that every climbing pass sold requires 1 expert twine as anandemployee and 3 novice employees to be on duty, and that every general deal gym pash duty. If there are 32 expert employees and 84 novice employees ready as Climbing ${ }^{\text {ass }}$ to be put on duty, how many of each type of pass should the Rec Center be selling to maximize their revenue?
Variables: go number of geneal gym passes the Recenter sells
C - number of climbing gym passes the Rec Center sells
R - revenue, in dollars, the Rec Center makes from selling geneal t climbing gym passes
Objective: Maximize $R=50_{c}+80 \mathrm{~g}$
Next ${ }^{+}$(b) Write this system of equations in a simplex tableau. What is the first page L pivot element?
Subject to: $c+2 g \leq 32$ (expert employees)

$$
\begin{aligned}
& 3 c+4 g \leq 84 \quad \text { (novice employees) } \\
& g \geq 2 c \quad(\text { "twice as many...") } \\
& s_{3} R, ~ \\
& g \geq 0 \text { (noninegativity castral.ts) }
\end{aligned}
$$

$\left[\begin{array}{ccccccc}C & g & s_{1} & s_{2} & s_{3} R & C & \\ 1 & 2 & 1 & 0 & 0 & 0 & 32 \\ 3 & 4 & 0 & 1 & 0 & 0 & 84 \\ -2 & 4 & 0 & 0 & 0 & 0 & \frac{32}{2} \\ \hline-50 & -80 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
The "1" in row 3, column 2

