Math 150 - Week-In-Review 1 Sana Kazemi

 Problem Statements

 Problem Statements}

1. Consider the function

$$
h(x)= \begin{cases}-2 x+4 & , \text { if } x \leq-1 \\ (x-2)^{2} & , \text { if } x>-1\end{cases}
$$

Find $h(-2), h(-1)$, and $h(2)$.
2. Find an equation of the line through the points $(3,9)$ and $(-7,1)$ in standard form.
3. Find an equation of the line through the points $(3,9)$ and $(3,-2)$.
4. Find an equation of the line through the points $(3,9)$ and $(-1,9)$.
5. Write an equation of a line a) parallel to and b) perpendicular to the line $5+x-2 y=0$ and passing through the point $(4,-3)$ in slope-intercept form.
6. Solve the following inequalities. Graph their solution set.
(a) $\frac{x}{2}-\frac{3}{5} \leq \frac{1-2 x}{10}$
(b) $-5 \leq \frac{1-4 x}{2}<7$
(c) $|3 x-1|<11$
7. Simplify the following expression. Write your answer so that each variable appears at most once, and all exponents are positive.

$$
\frac{15\left(x y^{-1}\right)^{2}\left(x^{-2} y^{2}\right)^{3}}{5\left(x^{-1 / 2}\right)^{4}\left(x y^{-3}\right)^{-2}}
$$

8. Simplify each radical expression.
(a) $\sqrt[3]{\frac{16 x^{4} y^{2} z^{4}}{-27 x^{2} y^{5}}}$
(b) $\sqrt{x^{3}}+\sqrt{4 x^{3}}-\sqrt{8 x}$
9. Rationalize the denominator.
(a) $\frac{5-z}{\sqrt{5}+\sqrt{z}}$
(b) $\frac{5 \sqrt{3}-3 \sqrt{2}}{2 \sqrt{3}+3 \sqrt{2}}$
10. Simplify the following expression. Leave answer with rational exponents.

$$
\left(\frac{a^{5 / 4} \cdot a^{-1 / 8}}{a^{1 / 4}}\right)^{8 / 3}
$$

11. Factor each expression.
(a) $x^{2} y^{2}-10 x y+25$
(b) $4 y^{2}-4 y-3$
(c) $(x+2)\left(x^{2}-8\right)+(x+2)^{2}(x-1)$
12. Find the domain of each expression.
(a) $f(x)=x^{2}-10 x+18$
(b) $\frac{7 x+1}{9 x^{2}-3}$
(c) $\frac{\sqrt{1-2 x}}{x^{2}-5 x}$
13. Perform the operations and simplify.
(a) $\frac{2 x^{2}-5 x-3}{6 x^{2}+3 x} \cdot \frac{3 x^{2}+12 x-15}{x^{2}+2 x-15}$
(b) $\frac{x^{2}+5 x-14}{x^{2}+8 x+7} \div \frac{x^{2}-x-2}{x-3}$
(c) $\frac{x+2}{x^{2}-2 x-8}-\frac{x-2}{x^{2}-4}$
(d) $\frac{\frac{1}{x}-\frac{1}{2 x^{2}}}{\frac{2}{x}-1}$
14. Determine whether the function is even, odd, or neither. Then describe the symmetry.
(a) $f(x)=\frac{x\left(x^{2}-1\right)}{5 x^{4}+1}$
(b) $g(x)=\sqrt[3]{x^{2}-1}$
(c) $h(x)=\frac{x^{3}-1}{x^{4}+2}$
15. If $h(x)=\frac{3 x}{2}+1$ evaluate the following:
(a) $h(a)$
(b) $h(a+b)$
(c) $\frac{h(a+b)-h(a)}{b}$
