Note $\sharp 1$ : Sections 12.1-12.5
Problem 1. a) Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}-x+4 y-10 z-1=0$. "completion of squares" $x^{2}+2 a x=(x+a)^{2}-a^{2} \quad \Leftrightarrow\left(x^{2}-x\right)+\left(y^{2}+4 y\right)+\left(z^{2}-10 z\right)-1=0$

$$
\Leftrightarrow\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}+(y+2)^{2}-4+(z-5)^{2}-25-1=0
$$

$$
\Leftrightarrow\left(x-\frac{1}{2}\right)^{2}+(y+2)^{2}+(z-5)^{2}=\frac{1}{4}+4+25+1=\frac{121}{4}
$$

Center: $\left(\frac{1}{2},-2,5\right) \quad$ radius $=\sqrt{\frac{121}{4}}=\frac{11}{2}$


Problem 3. Giver $\mathbf{a}=\langle 1,-1,5\rangle$ and $\mathbf{b}=\langle-3,2,1\rangle$,
a) find a unit vector in the direction or $a+2 \mathbf{b}$.

$$
\begin{aligned}
& \vec{a}+2 \vec{b}=\langle 1,-1,5\rangle+\underbrace{2\langle-3,2,1\rangle}_{\langle-6,4,2\rangle}=\langle-5,3,7\rangle \\
& |\langle-5,3,1\rangle|=\sqrt{5^{2}+3^{2}+\eta^{2}}=\sqrt{25+9+49}=\sqrt{83}
\end{aligned}
$$


b) find the vector that has the same direction as $\mathbf{a}+2 \mathbf{b}$ but has length 4 .

$$
=4(\vec{a}+2 \vec{b})=\frac{4}{\sqrt{83}}\langle-5,3,7\rangle
$$

Problem 4. Compute $\mathbf{a} \cdot \mathbf{b}$ if
a) $\mathbf{a}=\langle 4,5,-1\rangle$ and $\mathbf{b}=\langle 2,1,3\rangle$.

$$
\left\langle a_{1}, a_{2}, a_{3}\right\rangle \cdot\left\langle b_{1}, b_{2}, b_{3}\right\rangle=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

$$
\vec{a} \cdot \vec{b}=4 \cdot 2+5 \cdot 1+(-1)(3)=8+5-3=10
$$

b) $|\mathbf{a}|=2,|\mathbf{b}|=5$ and $\theta=120^{\circ}$.

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta,
$$

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta)=2 \cdot 5 \cdot \cos \left(\mid 20^{\circ}\right)=2 \cdot 5 \cdot\left(-\frac{1}{2}\right)=-5
$$


c) $|\mathbf{a}|=6,|\mathbf{b}|=4$ and $\mathbf{a}$ is perpendicular to $\mathbf{b}$.
$\vec{a} \cdot \vec{b}=0 \Leftrightarrow \vec{a}, \vec{b}$ per pendicular (Orthogonal)
d) $|\mathbf{a}|=6,|\mathbf{b}|=4$ and $\mathbf{a}$ is parallel to $\mathbf{b}$.

$$
\vec{a} \cdot \vec{b}=6 \cdot 4 \cdot \cos (0)=6 \cdot 4 \cdot 1=24
$$

Problem 5. The points $A(0,-1,6), B(2,1,-3)$ and $C(5,4,2)$ form a triangle. Find $\angle C$.

can it be Problem 6. Let $\mathbf{a}, \mathbf{b}$, and $\mathbf{c}$ be three dimensional vectors. Which of the following expressions are calculated? meaningful? Which are meaningless?
$\underbrace{\text { a) }} \underbrace{\mathbf{a}} \cdot(\underbrace{(\mathbf{b}+\mathbf{c})}=$ real number exists $\Rightarrow$ meaning fuel
$3 d \cdot 3 d$
b) $\mathbf{a} \cdot \mathbf{b}+\mathbf{c} \Rightarrow$ meaningless
$3 d \cdot 3 d$ (3d) $x$

$$
=1 d+
$$

Problem 7. Determine whether the given vectors are orthogonal parallel or neither.
a) $\mathbf{a}=\langle 3,-1,2\rangle, \quad \mathbf{b}=\langle 6,-2,4\rangle$

$$
\vec{b}=2 \vec{a} \text { parallel }
$$



$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=1 \cdot 2+2 \cdot 3+(-1)(-1)=2+6+1 \\
& \mathbf{a}=2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}, \quad \mathbf{b}=-2 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}=\langle-2,2,3\rangle
\end{aligned}
$$

$$
\vec{a} \cdot \vec{b}=2(-2)+(-1)(2)+(2)(3)=-4-2+6=0
$$

Problem 8. Find the scalar and vector projections of $\langle 2,4,6\rangle$ onto $\langle 1,3,5\rangle$.

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =1 \cdot 2+3 \cdot 4+5 \cdot 6=2+12+30\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}\right) \vec{a} \\
& =44
\end{aligned}
$$

$$
\operatorname{com}_{\vec{a}} \vec{b}=\frac{44}{\sqrt{35}}
$$

$$
|\vec{a}|=\sqrt{1^{2}+3^{2}+5^{2}}=\sqrt{35}
$$

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\frac{44}{35}\langle 1,3,5\rangle
$$

Problem 9. Find the cross product of $\langle 1,1,3\rangle$ and $\langle-2,-1,-5\rangle$.
out of the page

$$
=-2 \hat{\imath}-\hat{\jmath}+\hat{k}
$$



$$
\begin{aligned}
|\vec{u} \times \vec{v}| & =|\vec{u}||\vec{v}| \sin \theta \\
& =4 \cdot 5 \cdot \sin \left(45^{\circ}\right) \\
& =4 \cdot 5 \cdot \frac{\sqrt{2}}{2} \\
& =10 \sqrt{2}
\end{aligned}
$$

Problem 11. Find the area of the parallelogram determined by $\mathbf{a}=\langle 3,0,2\rangle$ and $\mathbf{b}=\langle 1,-4,5\rangle$.


$$
\begin{aligned}
& +((1)(-1)-(1)(-2)) \hat{k}
\end{aligned}
$$

Problem 12. Find a vector equation of the line that passes through the point $(2,-5,1)$ and is parallel to the vector $\langle 8,10,-7\rangle$.


Problem 13. Find parametric equations and a symmetric equation for the line passing through the points $(-2,3,4)$ and $(5,2,8)$.

$$
\begin{aligned}
\left\langle=\frac{x+2}{\langle x, y, z\rangle} \begin{array}{rl} 
& =\langle-2,3,4\rangle+t\langle 1,-1,4\rangle \\
& =\langle-2+\eta t, 3-t, 4+4 t\rangle \\
\left\{\begin{array}{l}
x=-2+n t
\end{array} \quad\right. \text { Parametric Eqns } \\
y=3-t \\
z=4+4 t
\end{array}\right. \\
t=\frac{x+2}{1}=\frac{y-3}{-1}=\frac{z-4}{4} \quad \text { Symmetric Eqn }
\end{aligned}
$$



$$
\langle-2,3,4\rangle\rangle
$$

$$
\vec{v}=\langle 5,2,8\rangle-\langle-2,3,4\rangle
$$

$$
=\langle 1,-1,4\rangle
$$

Problem 14. Find an equation of the plane passing through the point $(3,4,5)$ and perpendicular to $\langle-1,2,5\rangle$.

$$
\begin{aligned}
& -1(x-3)+2(y-4)+5(z-5)= \\
& \Leftrightarrow-x+3+2 y-8+5 z-25=0 \\
& \Leftrightarrow-x+2 y+5 z-30=0
\end{aligned}
$$



Problem 15. Find an equation of the plane passing through the point $(1,5,-3)$ and perpendicular to the line $x=2-4 t, y=2 t, z=-1+t$.

$$
-4(x-1)+2(y-5)+(z+3)=0
$$



Problem 16. Find the equation of the plane that passes through the points $P(1,0,1), Q(2,3,4)$ and $R(2,1,1)$.

$$
\begin{aligned}
& \overrightarrow{P Q}=Q-P=\langle 2,3,4\rangle-\langle 1,0,1\rangle=\langle 1,3,3\rangle \\
& \overrightarrow{P R}=R-P=\langle 2,1,1\rangle-\langle 1,0,1\rangle=\langle 1,1,0\rangle \\
& \vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{j} & \hat{k} \\
1 & 3 & 3 \\
1 & 1 & 0
\end{array}\right|=-3 \hat{\imath}+3 \hat{\jmath}-2 \hat{k} \\
& \quad-3(x-1)+3(y-0)-2(z-1)=0
\end{aligned}
$$



Problem 17. Find an equation of the plane passing through the point $(-1,-3,2)$ that contains the line $x=-1-2 t, y=4 t, z=2+t$.

$$
\begin{aligned}
& \vec{v}=\langle-2,4,1\rangle-\text { direction vector of the line } \\
& \vec{w}=\langle-1,-3,2\rangle-\underset{\text { - }}{\langle-1,0,2\rangle}=\langle 0,-3,0\rangle \\
& t=0 \text { on the line } \\
& \vec{n}=\vec{w} \times \vec{v}=\left|\begin{array}{ccc}
+\hat{\imath} & -\hat{\jmath} & +\hat{k} \\
0 & -3 & 0 \\
-2 & 4
\end{array}\right|=-3 \hat{l}-6 \hat{k} \\
& =-3\langle 1,0,2\rangle
\end{aligned} \quad \begin{array}{r}
-3(x+1)-6(z-2)=0
\end{array}
$$

Problem 18. Consider the lines $\mathbf{r}_{1}(t)=\langle\underbrace{2+\mid t}, 2 t, 5+t\rangle$ and $\mathbf{r}_{2}(s)=\langle s,-\underbrace{4+4 s}, \underbrace{3+s}\rangle$.
a) Find the point of intersection of the lines

$$
\begin{cases}x: & 2+t=s \Leftrightarrow t-s=-2 \cdots(1) \\ y: & 2 t=-4+4 s \Leftrightarrow t-2 s=-2 \cdots(2) \\ z: & 5+t=3+s \Leftrightarrow t-s=-2\end{cases}
$$

$$
\begin{aligned}
& (1)-(2) \quad s=0 \Rightarrow t=-2 \\
& \vec{r}_{2}(0)=\langle 0,-4,3\rangle
\end{aligned}
$$

b) Find an equation of the plane that contains these lines.

$$
\begin{aligned}
& \langle 1,2,1\rangle \times\langle 1,4,1\rangle=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 2 & 1 \\
1 & 4 & 1
\end{array}\right|=-2 \hat{\imath}+2 \hat{k} \\
& -2(x-0)+0(y+4)+2(z-3)=0 \\
& \Leftrightarrow-2 x+2(z-3)=0
\end{aligned}
$$

$$
+2 \hat{k}
$$

Problem 19. Consider the planes $z=x+y$ and $2 x-5 y-z=1$. Set $x=0$, or $y=0$
a) Find the angle between the planes.

$$
\begin{aligned}
& z=x+y \Leftrightarrow x+y-z=0 \Rightarrow \vec{n}_{1}=\langle 1,1,-1\rangle \\
& 2 x-5 y-z=1 \Rightarrow \vec{n}_{2}=\langle 2,-5,-1\rangle \\
& \overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}=\left|\vec{n}_{1}\right|\left|\overrightarrow{n_{2}}\right| \cos \theta \\
& \overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}=(1)(2)+(1)(-5)+(-1)(-1)=2-5+1=-2 \\
& \left|\overrightarrow{n_{1}}\right|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \quad\left|\vec{n}_{2}\right|=\sqrt{2^{2}+5^{2}+1^{2}}=\sqrt{30} \\
& \cos \theta=\frac{+2}{\sqrt{3} \sqrt{30}} \quad \theta=\cos ^{-1}\left(\frac{+2}{\sqrt{3} \sqrt{30}}\right) \\
& \text { b) Find the line of intersection of the planes. }
\end{aligned}
$$


b) Find the line of intersection of the planes.

$$
\begin{aligned}
& \text { Vector } \vec{v}=\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\left|\begin{array}{rrr}
\hat{\imath} & \hat{\jmath} & \vec{k} \\
1 & 1 & -1 \\
2 & -5 & -1
\end{array}\right|=-6 \hat{\imath}-\hat{\jmath}-\eta \hat{k} \text { parallel } \\
& \text { to the line }
\end{aligned}
$$

a point on the line: $x=0:\left\{\begin{array}{l}z=y \\ -5 y-z=1\end{array} \quad-6 y=1 \Leftrightarrow y=-\frac{1}{6}=z \quad\left(0,-\frac{1}{6},-\frac{1}{6}\right)\right.$

$$
\langle x, y, z\rangle=\left\langle 0,-\frac{1}{6},-\frac{1}{6}\right\rangle+t\langle-6,-1,-7\rangle
$$

