

Math 150 - Week-In-Review 4 Sana Kazemi

PROBLEM STATEMENTS

1. Find the indicated information for the following functions.

(a)
$$f(x) = \frac{2x^2 - 7x + 3}{x^2 - 2x - 3} = \frac{(2x - 1)(x/3)}{(x/3)(x + 1)}$$

Domain: $(-\infty, -1) \cup (-1, 3) \cup (3, \infty)$

Hole(s): (3, 5,

Vertical Asymptote(s): x= _\

y-intercept: (°,-1)

x-intercept(s): (1,0) , (3,0) not in dom.

Work:

Hole at
$$x=3$$
 $\Rightarrow \frac{6-1}{3+1}=\frac{5}{4}$

(3,5/1)

y-int. let
$$x=0$$
 \longrightarrow $\frac{Z(0)-1}{0+1} = \frac{1}{1} = 1$
 $x=1$

Vertical asy $x=1$ add multiplicity $x=3$
 $x=3$
 $x=3$
 $x=3$
 $x=3$
 $x=3$

$$2x_{-1}(x-3) = 0$$
 $x = 3$ $x = \frac{1}{2}$

if
$$X \rightarrow -1$$
 (from left)

if
$$X \rightarrow -1$$
 (from left) e.g. -1.001 \Longrightarrow $Z(-1.001+1)$ = $-1.001+1$

if
$$\chi \rightarrow -1^+$$
 (from right) e.g. $-0.999 \Rightarrow \frac{2(-0.999)-1}{-0.992+1} = \frac{-}{+} < 0 \Rightarrow \qquad \forall \rightarrow -\infty$

Horizontal asy.

$$\frac{2x-1}{x+1} = 2 \implies y=2$$

(b)
$$g(x) = \frac{5x(x-8)}{(x-4)^2}$$

Domain: $(-\infty, 4) \cup (4, \infty)$

Hole(s):

even multiplicity

Hole(s): None

Vertical Asymptote(s): X=4

y-intercept: (o / o)

Horizontal Asymptote(s): _______

leading terms: $\frac{5 \times ?}{x^2} = 5$

(c)
$$g(x) = \frac{8x^2 - 10x + 3}{x - 1} = \frac{(2x - 1)(4x - 3)}{x - 1}$$

Domain: $(-\infty, 1) \cup (1, \infty)$

Hole(s): None

Vertical Asymptote(s): \times =\

y-intercept: (o₁-3)

x-intercept(s): (1), (3), (3)

Horizontal Asymptote(s): Now

Slant Asymptote: 4 = 8x-2

Morizontal Asy:

$$g(x) \approx \frac{8x^2}{x} = 8x \Rightarrow None!$$

Slant Asy. ?

$$-2x+3$$

$$-2x+2$$

 $\Rightarrow \frac{8x^2 - 10x_{+3}}{8x^2 - 10x_{+3}} = \frac{8x - 2}{x - 1}$

$$\times \rightarrow 1$$
 $\xrightarrow{+} \rangle_{e} \quad \partial \omega \rightarrow +\infty$

$$X \rightarrow 1^ \xrightarrow{+} \langle 0 \quad g(x) \rightarrow -\infty$$

2.
$$g(x) = \frac{x-2}{x^2+4}$$
 we wish

Domain:

Hole(s): None

Vertical Asymptote(s):

y-intercept: $(0, -\frac{1}{2})$

x-intercept(s): (2, 0)

Horizontal Asymptote(s):

