Math 150 - Week-In-Review 4
 Sana Kazemi

Problem Statements

1. Find the indicated information for the following functions.
(a) $f(x)=\frac{2 x^{2}-7 x+3}{x^{2}-2 x-3}=\frac{(2 x-1)(x-3)}{(x / 3)(x+1)}$

Domain: \qquad
Hole (s): \qquad
Vertical Asymptotes): \qquad y-intercept: \qquad
x-intercep ts): $\left(\frac{1}{2}, 0\right)$, 2,0 not in dom.
Horizontal Asymptotes): \qquad

work

Hole at $x=3 \rightarrow \frac{6-1}{3+1}=\frac{5}{4} \quad(3,5 / 4)$
$\begin{array}{ll}y \text { _int. } & \text { let } x=0 \rightarrow \\ x \text { _int } & \text { let } y=0\end{array}$

$$
\text { let } y=0 \rightarrow \begin{gathered}
0+1 \\
(2 x-1)(x-3)=0 \rightarrow x=3 \quad \& \quad x=\frac{1}{2}
\end{gathered}
$$

Vertical ass. $x=-1 \rightarrow$ odd multiplicity $\longrightarrow \vdots_{i} \rightarrow$ or \hat{i}^{i}
if ${ }^{\text {Check }} \mathrm{X} \rightarrow-$ - $^{\text {(from left) }}$ e.g. $-1.001 \Rightarrow \frac{2(-1.1)-1}{-1.001+1}=\frac{-}{-}>0 \Rightarrow y \rightarrow+\infty$
if $x \rightarrow-1^{+}$(from right) e.g. $-0.999 \Rightarrow \frac{2(-0.999)-1}{-0.999+1}=\frac{-}{+}<0 \Rightarrow y \rightarrow-\infty$

Horizontal asy.

$$
\frac{2 x-1}{x+1} \stackrel{\substack{\text { end } \\ \text { bewior }}}{\approx} \frac{2 x}{x}=2 \quad y=2
$$

(b) $g(x)=\frac{5 x(x-8)}{(x-4)^{2}}$

Domain: $(-\infty, 4) \cup(4, \infty)$
Holes): None
even multiplicity
si, or $\underset{\sim}{2} \leftarrow$ Vertical Asymptote (s): $x=4$
y-intercept: (0,0)

$$
\underset{\text { cross }}{\text { odd multip. }} \leftarrow x \text {-intercept }(\mathrm{s}):(0,0) \&(8,0)
$$

Horizontal Asymptotes): $\quad y=5$
leading terms: $\frac{5 x^{2}}{x^{2}}=5$

(c) $g(x)=\frac{8 x^{2}-10 x+3}{x-1}=\frac{(2 x-1)(4 x-3)}{x-1}$

Domain: $(-\infty, 1) \cup(1, \infty)$
Hole (s): \qquad
Vertical Asymptotes): \qquad
y-intercept: ($0,-3$)

$$
x \text {-intercept }(\mathrm{s}):\left(\frac{1}{2}, 0\right),\left(\frac{3}{4}, 0\right)
$$

Horizontal Asymptotes): None \qquad
Slant Asymptote: $y=8 x-2$

Morizontal Ass:

$$
\begin{aligned}
& \frac{g(x)}{\sim} \frac{8 x^{2}}{x}=8 x \\
& x-1 \sqrt{8 x-2} \\
& 8 x^{2}-10 x+3 \\
& 8 x^{2}-8 x
\end{aligned}
$$

Slant Ass?

$$
\begin{aligned}
& \frac{x^{\frac{8 x-2}{}} \begin{array}{l}
\frac{8 x^{2}-10 x+3}{8 x^{2}-8 x} \\
-2 x+3
\end{array}}{1} \\
& \Rightarrow \frac{8 x^{2}-10 x+3}{x-1}=8 x-2+\frac{1}{x-1}
\end{aligned}
$$

$$
\begin{array}{ll}
x=1 \quad V \cdot A . \\
x \rightarrow 1^{+} & \frac{+}{+}>^{0} \\
& g(x) \rightarrow+\infty \\
x \rightarrow 1^{-} & \frac{+}{-}<0
\end{array} \quad g(x) \rightarrow-\infty
$$

2. $g(x)=\frac{x-2}{x^{2}+4} \rightarrow$ irreducible

Domain: \mathbb{R}
Hole(s): None
Vertical Asymptote(s): None
y-intercept: $\left(0,-\frac{1}{2}\right)$
x-intercept(s): $(2,0)$

