Section 1.1: Basic Matrix Operations

- Size (Dimensions): $\underset{\text { rows } \times \text { columns }}{\text { E }}$ Man matrix Mod days,
- Entries: Labeled based on row and column position, $a_{i j}$
- Addition/Subtraction:
- Matrices must be the same size for the operation to be performed
- Combined corresponding entries based on operation given
- Scalar Product: multiplying a matrix by a constant results in a matrix of the same size
- Transpose of a matrix $A: A^{T} \Rightarrow$ J $山 \downarrow$
- Matrix Equality: two matrices are equal if they are the same size AND corresponding entries are equal
- Operations of matrices which contain variables must be done by hand
Pr 1. Use the given matrices A, B, C, D, and E below, to Determine the dimensions of the resulting matrices, if possible. If the given operation is not possible, explain why.
b. $(B+C)^{T}$.

$$
\text { If } A \text { has size } m \times n
$$

$$
\text { then } A^{\top} \text { has size } n \times m
$$

not defined.

$$
\begin{aligned}
& \text { scalar multiplication } \\
& \text { 2colurins }\left[\begin{array}{ll}
1 & 3
\end{array}\right] \\
& \text {) } \frac{1}{2} B \text { is } 1 \times 2 \\
& 2 \times 3 \rightarrow\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
\end{aligned}
$$

Pr 2. Use the given matrices A, B, C, D, E, and F below, to compute each operation, if possible.
a. State the dimensions of each matrix.
b. State the value of c_{32}. \rightarrow matrix C3rdrow 2 ad column
c. State the value of b_{21}^{π}.
d. Given $M=B_{T}^{T}$, state the value of m_{21}.

$$
\begin{gathered}
{\left[\begin{array}{ccc}
-9 & 0 & 3
\end{array}\right]} \\
M=B^{T}=-2\left[\begin{array}{c}
-9 \\
0 \\
3
\end{array}\right]
\end{gathered}
$$

$$
m_{2!}=0
$$

$$
c_{32}=(x+1)
$$

b $21 ~_{\text {matrix } B}^{2 n d ~ r o w ~}$

$$
\text { His } 3 \times 1
$$

\rightarrow e. Compute $D+E$.

$$
\begin{array}{cc}
\text { Compute } D+E \\
D \text { is } & 2 \times 2 \\
E & \text { is } 2 \times 2
\end{array} \quad\left[\begin{array}{cc}
1.6 & 3 \\
5 & 15 p
\end{array}\right]+\left[\begin{array}{cc}
v & 10 \\
6 M & -1
\end{array}\right]
$$

$$
D+E \text { is } 2 \times 2
$$

f. Compute $C^{T}-\underline{6}$. $\neg 」$

$$
C T=\left[\begin{array}{ccc}
-3 & -y & 5 \\
w & 0 & x+1
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
1.6+v & 3+10 \\
5+6 m & 15 p+(-1)
\end{array}\right] \\
& =\left[\begin{array}{cc}
v+1.6 & 13 \\
6 m+5 & 15 p-1
\end{array}\right]
\end{aligned}
$$

g. Compute $2 D-3 E$.

$$
\begin{aligned}
& =\left[\begin{array}{lll}
v+1.6 & 1 \\
6 m+5 & 15 \\
6 & 1 / 5 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.L \begin{array}{ccc}
1 & 5 & 0 \\
-3 & -y & 5 \\
w & 0 & x+1
\end{array}\right]+\left[\begin{array}{ccc}
-6 \cdot 5 & -6 \cdot 2 & -6 \\
\hline & 6 \\
-6 \cdot 6 & -6 \cdot \frac{1}{5} & -6 \cdot 0
\end{array}\right] \\
= & {\left[\begin{array}{ccc}
-3 & -y & 5 \\
w & 0 & x+1
\end{array}\right]+\left[\begin{array}{ccc}
-30 & -12 & -36 \\
-36 & -\frac{6}{5} & 0
\end{array}\right] }
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
-3+(-30):-y-12 & 5-36 \\
w-36 & 0-\frac{6}{5} & x+1-0
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
-33 & -y-12 \\
w-36 & -\frac{6}{5}
\end{array}\right]
$$

$$
\begin{aligned}
& A=2\left[\begin{array}{ccc}
1 & 2 & 3 \\
5 & 2 & 6 \\
6 & \frac{1}{5} & 0
\end{array}\right] \quad 2 \times 3
\end{aligned}
$$

$$
\begin{aligned}
& D=1=2 \times 2 \\
& E={ }_{2}^{\prime}\left[\begin{array}{cc}
v & 10 \\
6 m & -1
\end{array}\right] \quad 2 \times 2 \\
& F=\stackrel{1}{2}\left[\begin{array}{c}
-3 r \\
6 z
\end{array}\right] \quad 2 \times 1
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
5 & 2 & 6 \\
6 & \frac{1}{5} & 0
\end{array}\right] \\
& B=\left[\begin{array}{lll}
-9 & 0 & 3
\end{array}\right] \\
& C=\left[\begin{array}{cc}
-3 & w \\
-y & 0 \\
5 & (x+1)
\end{array}\right] \\
& \underline{D}=\left[\begin{array}{cc}
1.6 & 3 \\
5 & 15 p
\end{array}\right] \\
& F=\left[\begin{array}{c}
-3 r \\
6 z
\end{array}\right] \\
& 2 D-3 E \text { is } 2 \times 2
\end{aligned}
$$

i. If $D=3 E$, solve for m, v and p.

$$
\left.2\left[\begin{array}{cc}
1.6 & 3 \\
5 & 15 p
\end{array}\right]-\begin{array}{cc}
v & 10 \\
6 m & -1
\end{array}\right]\left[\begin{array}{cc}
2.1 .6 & 2.3 \\
\text { for } m, v \text { and } p . \\
2.5 & 2.15 p
\end{array}\right]-\left[\begin{array}{cc}
3 . v & 3.10 \\
3.6 m & 3 \cdot(-1)
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
3.2 & 6 \\
10 & 30 p
\end{array}\right]-\left[\begin{array}{cc}
3 v & 30 \\
18 m & -3
\end{array}\right]
$$

3. Solve the matrix equation for the matrix X.

$$
\begin{aligned}
3 X-\left[\begin{array}{cc}
260 & 165 \\
130 & 60
\end{array}\right]=\left[\begin{array}{cc}
120 & 165 \\
320 & -30
\end{array}\right]-3 X & =\left[\begin{array}{lll}
3.2-3 v & 6 & -30 \\
10-18 m & 30 p-(-3)
\end{array}\right] \\
& =\left[\begin{array}{ll}
-3 v+3.2 & -24 \\
-18 m+10 & 30 p+3
\end{array}\right]
\end{aligned}
$$

4. Solve the matrix equation $6 X-3 A=6 B+A$, for matrix X, assuming that the matrices A, B and X are the same size.

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
5 & 2 & 6 \\
6 & \frac{1}{5} & 0
\end{array}\right] \\
& D=\left[\begin{array}{cc}
1.6 & 3 \\
5 & 15 p
\end{array}\right]
\end{aligned}
$$

h. Compute $\left(\underline{\sim}^{T}+C\right)^{T}$

$B^{T}+C$ is not defined
i. If $\underset{\sim}{D}=3 \underset{\sim}{E}$, solve for $\underset{\sim}{m}, \underset{\sim}{v}$ and $\underset{\sim}{p}$.
$2 \times 2 \quad 2 \times 2$
no solution
no solution

$$
\underline{B}=\left[\begin{array}{lll}
-9 & 0 & 3
\end{array}\right]
$$

$$
\underline{C}=\left[\begin{array}{cc}
-3 & w \\
-y & 0 \\
5 & (x+1)
\end{array}\right]
$$

$$
E=\left[\begin{array}{cc}
v & 10 \\
6 m & -1
\end{array}\right]
$$

$\left(B^{\top}+C\right)^{T}$ is not defined

$$
\begin{aligned}
& F=\left[\begin{array}{c}
-3 r \\
6 z
\end{array}\right] \\
& \text { ind }
\end{aligned}
$$

$5=18 \mathrm{~m}$ not possible

$$
15 p=-3
$$

assume $3=30$ disn't exist

$$
\text { Pr 3. Solve the matrix equation for the matrix } X \text {. } 3 X-\left[\begin{array}{cc}
260 & 165 \\
130 & 60
\end{array}\right)
$$

Pr 4. Solve the matrix equation $6 X-3 A=6 B+A$, for matrix X, assuming that the matrices A, B and X are the same size. ") "unknown""
Goal $x=$ stuff with $A, B \quad A, B$ are

$$
X=B+\frac{2}{3} A
$$

$$
\begin{aligned}
6 x-3 A= & 6 B+A \\
+3 A & +3 A \\
\frac{1}{6} \cdot 6 x & \left.=6 B+A+3 A=\frac{1}{6}+6 B+4 A\right) \\
x=\frac{1}{6} 6 B & +\frac{1}{6} \cdot 4 A \\
& =B+\frac{4}{6} A=1
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
5 & 2 & 6 \\
6 & \frac{1}{5} & 0
\end{array}\right] \\
& D=\left[\begin{array}{cc}
1.6 & 3 \\
5 & 15 p
\end{array}\right]
\end{aligned}
$$

h. Compute $\left({\underset{\sim}{B}}^{T}+C\right)^{T}$
$\underline{B}=\left[\begin{array}{lll}-9 & 0 & 3\end{array}\right]$

$$
E=\left[\begin{array}{cc}
v & 10 \\
6 m & -1
\end{array}\right]
$$

$$
\underline{C}=\left[\begin{array}{cc}
-3 & w \\
-y & 0 \\
5 & (x+1)
\end{array}\right]
$$

$$
F=\left[\begin{array}{c}
-3 r \\
6 z
\end{array}\right]
$$

$\left(B^{T}+C\right)^{T}$ is not defined

$$
\begin{aligned}
& B^{\top} \text { is } 3 \times 1 \quad 3 \times 2 \\
& B^{\top}+C \text { is not }
\end{aligned}
$$

defined
i. If $\underset{\sim}{D}=3 \underset{\sim}{E}$, solve for $\underset{\sim}{m}, \underline{v}$ and p.
$2 \times 2 \quad 2 \times 2$
no solution

$$
\begin{aligned}
& 1.6=3 v \\
& 3=30 *
\end{aligned}
$$

$$
5=18 \mathrm{~m} \text { not possible }
$$

assume $3=30$ difn't exist

$$
15 p=-3
$$

Pr 3. Solve the matrix equation for the matrix X.
what is the size of $X ? \begin{gathered}3 X \\ \sqrt{3}+3 \times\left[\begin{array}{cc}260 & 165 \\ 130 & 60 \\ 2 \times 2\end{array}\right]=\left[\begin{array}{cc}120 & 165 \\ 320 & -30\end{array}\right]-3 X \\ +3 \times\end{gathered}$

x is 2×2

$$
\begin{gathered}
2 \times 2 \\
6 x-\left[\begin{array}{ll}
260 & 165 \\
130 & 60
\end{array}\right]=\left[\begin{array}{ll}
120 & 165 \\
320 & -30
\end{array}\right]\left[\begin{array}{ll}
\frac{15 p}{15} & \frac{-3}{15} \\
p=-3 / 15 \\
260 & 165 \\
130 & 60
\end{array}\right]+\left[\begin{array}{cc}
260 & 165 \\
130 & 60
\end{array}\right]
\end{gathered}
$$

Pr 4. Sale he matrix equation $6 \mathrm{~K}-3 A=6 B+A$, for matrix X, assuming that the matrices A, B and स are the same size.

$$
\begin{aligned}
6 x & =\left[\begin{array}{ll}
120 & 165 \\
320 & -30
\end{array}\right]+\left[\begin{array}{ll}
260 & 165 \\
130 & 60
\end{array}\right] \\
6 x & =\left[\begin{array}{ll}
380 & 330 \\
450 & 30
\end{array}\right] \\
x & =\frac{1}{6}\left[\begin{array}{ll}
380 & 330 \\
450 & 30
\end{array}\right] \\
x & =\left[\begin{array}{ll}
\frac{190}{3} & 55 \\
75 & 5
\end{array}\right]
\end{aligned}
$$

Section 1.2: Matrix Multiplication

- For the matrix product $A B$ to exist the number of columns of matrix A must be the same as the number of rows of matrix B. left sight
- Matrix multiplication is not commutative.
$A B ; B A$
A. B has size man $A \quad B$
Pr 1. Use the given matrices A, B, C, D, E, and F below, to compute each matrix product, if possible.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
5 & 2 & 6 \\
6 & \frac{1}{5} & 0
\end{array}\right] \\
& \underline{D}=\left[\begin{array}{cc}
1.6 & 4.8 \\
5 & 15 p
\end{array}\right]
\end{aligned}
$$

$$
B=\left[\begin{array}{lll}
-9 & 0 & 3
\end{array}\right]
$$

$$
C=\left[\begin{array}{cc}
-3 & w \\
-y & 0 \\
5 & (x+1)
\end{array}\right]
$$

$$
E=\left[\begin{array}{cc}
v & 10 \\
6 m & -1
\end{array}\right]
$$

a. $\underline{D} A$

$$
\begin{aligned}
& 2 \times 2,2 \times 3 \\
& 2 \times 3
\end{aligned}
$$

$$
\rightarrow\left[\begin{array}{c}
1.6 \\
5
\end{array}\right.
$$

b. $F C$
c. $F^{T} E$

$$
=\left[\begin{array}{ccc}
8+28.8 & 3.2+.96 & 9.6+0 \\
25+90 p & 10+3 p & 30+0
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
36.8 & 4.16 & 9.6 \\
90 p+25 & 3 p+10 & 30
\end{array}\right]
$$

d. $-6 B C$

Section 1.2: Matrix Multiplication

- For the matrix product $A B$ to exist the number of columns of matrix A must be the same as the number of rows of matrix B.
- Matrix multiplication is not fe f right
$A B \neq B A$
A. B has size Mr
$\underline{m} \times k \quad k \times \underline{2}$
Pr 1. Use the given matrices A, B, C, D, E, and F below, to compute each matrix product, if possible.

$$
\begin{aligned}
& \underline{A}=\left[\begin{array}{ccc}
5 & 2 & 6 \\
6 & \frac{1}{5} & 0
\end{array}\right] \\
& \underline{D}=\left[\begin{array}{cc}
1.6 & 4.8 \\
5 & 15 p
\end{array}\right] \\
& \text { a. }
\end{aligned}
$$

$$
B=\left[\begin{array}{lll}
-9 & 0 & 3
\end{array}\right]
$$

$$
\begin{gathered}
C \\
\boldsymbol{\chi}
\end{gathered}=\left[\begin{array}{cc}
-3 & w \\
-y & 0 \\
5 & (x+1)
\end{array}\right]
$$

$$
E=\left[\begin{array}{cc}
v & 10 \\
6 m & -1
\end{array}\right]
$$

$$
F=\left[\begin{array}{c}
-3 r \\
6 z
\end{array}\right]
$$

力

d. $-\underline{6} B C \rightarrow$ skip

$$
\begin{aligned}
& \left.\underset{\rightarrow}{\rightarrow} \xlongequal[=]{=} \begin{array}{lll}
5 & 2 & 6 \\
6 & \frac{1}{5} & 0
\end{array}\right] \\
& B=\left[\begin{array}{lll}
-9 & 0 & 3
\end{array}\right] \\
& C=\left[\begin{array}{cc}
-3 & w \\
-y & 0 \\
5 & (x+1)
\end{array}\right] \\
& D=\left[\begin{array}{cc}
1.6 & 4.8 \\
5 & 15 p
\end{array}\right] \\
& E=\left[\begin{array}{cc}
v & 10 \\
6 m & -1
\end{array}\right] \\
& F=\left[\begin{array}{c}
-3 r \\
6 z
\end{array}\right] \\
& \text { e. } F B A^{T} \\
& \text { 《 }> \\
& \frac{(F B) A^{\top}}{2 \times 3} 3 \times 2 \quad \frac{F\left(B A^{\top}\right)}{2 \times 11 \times 2} \\
& 2 \times 11 \times 3 \text { 3 } \times 2 \text { is } 2 \times 2 \\
& A \rightarrow 2 \times 3 \\
& {\left[\begin{array}{lll}
-9 & 0 & 3
\end{array}\right] \quad\left[\begin{array}{ll}
5 & 6 \\
2 & 1 / 5 \\
6 & 0
\end{array}\right]} \\
& \text { f. } B C+10 F^{T} \\
& \text { skipped } \\
& \text { g. } C E-A^{T} D \\
& \text { h. If } L=C D \text {, determine } l_{32} \text {. } \\
& =\left[\begin{array}{ll}
-9.5+0.2+3 \cdot 6 & 9 \cdot 6+0 \cdot \frac{1}{5}+3 \cdot 0
\end{array}\right] \\
& =[-45+0+18 \quad 54+0+0] \\
& B A^{\top}=[-2754] \\
& \text { skipped } \\
& \begin{aligned}
F \cdot\left(B A^{\top}\right) & =\left[\begin{array}{c}
-36 \\
6 z
\end{array}\right] \cdot\left[\begin{array}{ll}
-27 & 54
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3 r \cdot-27 & -38.54 \\
62 \cdot-22 & 62.54
\end{array}\right]
\end{aligned} \\
& =\left[\begin{array}{rr}
81 r & -162 r \\
-162 z & 324 z
\end{array}\right]
\end{aligned}
$$

i. Find the value of each variable, given $Q=\left[\begin{array}{cc}-33.8 & -6 \\ -5 & -15 \\ 52.8 & 21\end{array}\right]$ and $C D=Q$.

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
5 & 2 & 6 \\
6 & \frac{1}{5} & 0
\end{array}\right] \\
& B=\left[\begin{array}{lll}
-9 & 0 & 3
\end{array}\right] \\
& C=\left[\begin{array}{cc}
-3 & w \\
-y & 0 \\
5 & (x+1)
\end{array}\right] \\
& D=\left[\begin{array}{cc}
1.6 & 4.8 \\
5 & 15 p
\end{array}\right] \\
& E=\left[\begin{array}{cc}
v & 10 \\
6 m & -1
\end{array}\right] \\
& F=\left[\begin{array}{c}
-3 r \\
6 z
\end{array}\right] \\
& \text { e. } F B A^{T} \\
& \text { f. } B C+10 F^{T} \\
& \text { g. } C E-A^{T} D \\
& 3 \times 22 \times 2 \\
& \text { Compute } \\
& {\left[\begin{array}{cc}
-3 & w \\
-y & 0 \\
5 & x+1
\end{array}\right]\left[\begin{array}{cc}
v & 10 \\
6 m & -1
\end{array}\right]} \\
& =\left[\begin{array}{cc}
-3 \cdot v+w \cdot 6 m & -3 \cdot 10+w \cdot(-1) \\
-y \cdot v+0 \cdot 6 m & -y 10+0(-1) \\
5 v+(x+1) 6 m & 5 \cdot 10+(x+1)(-1)
\end{array}\right] \\
& 3 \times 2 \quad 3 \times 2 \\
& \text { h. If } L=C D \text {, determine } l_{32} \text {. } \\
& A^{\top} D=\left[\begin{array}{cc}
5 & 6 \\
2 & 1 / 5 \\
6 & 0
\end{array}\right]\left[\begin{array}{cc}
1.6 & 4.8 \\
5 & 15 p
\end{array}\right] \\
& =\left[\begin{array}{ll}
5 \cdot 1.6+6 \cdot 5 & 5 \cdot 4.8+6 \cdot 15 p \\
2 \cdot 1.6+1 / 5 \cdot 5 & 2.4 .8+1 / 5 \cdot 15 p \\
6 \cdot 1.6+0 \cdot 5 & 6 \cdot 4.8+0.15 p
\end{array}\right]
\end{aligned}
$$

i. Find the value of each variable, given $Q=\left[\begin{array}{cc}-33.8 & -6 \\ -5 & -15 \\ 52.8 & 21\end{array}\right]$ and $C D=Q$.

$$
\begin{aligned}
& A^{\top} D=\left[\begin{array}{ll}
\frac{8+30^{\prime \prime}}{4.2} & \frac{24+90 p}{9.6+3 p} \\
9.6 & 28.8
\end{array}\right] \\
& C \cdot E \cdot A_{T}^{\top} D=\left[\begin{array}{ll}
-3 v+6 w m-38 & -w-30-24-90 p \\
-y v-4.2 & -10 y-9.6-3 p \\
5 v+6(x+1) m-9.6 & -x+49-28.8
\end{array}\right] \\
& =\left[\begin{array}{ll}
-3 v+6 w m-38 & -w-54-90 p \\
-y v-4.2 & -10 y-9.6-3 p \\
5 v+6(x+1) m-9.6 & -x+20.2
\end{array}\right] /
\end{aligned}
$$

$A=\left[\begin{array}{lll}5 & 2 & 6 \\ 6 & \frac{1}{5} & 0\end{array}\right]$
$D=\left[\begin{array}{cc}1.6 & 4.8 \\ 5 & 15 p\end{array}\right]$
e. $F B A^{T}$
f. $B C+10 F^{T}$
g. $C E-A^{T} D$
h. If $L=C D$, determine l_{32}.
h. If $L=C D$,
$B=\left[\begin{array}{lll}-9 & 0 & 3\end{array}\right]$

$$
C=\left[\begin{array}{cc}
-3 & w \\
-y & 0 \\
5 & (x+1)
\end{array}\right]
$$

$$
E=\left[\begin{array}{cc}
v & 10 \\
6 m & -1
\end{array}\right]
$$

$$
F=\left[\begin{array}{c}
-3 r \\
6 z
\end{array}\right]
$$

$$
C \cdot D=\left[\begin{array}{cc}
-3 & w \\
-y & 0 \\
5 & x+1
\end{array}\right]\left[\begin{array}{cc}
1.6 & 4.8 \\
5 & 15 p
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-3.1 .6+w .5 & -3.4 .8+w .15 p \\
-y \cdot 1.6+0.5 & (-y) 4.8+0.15 p \\
5 \cdot 1.6+(x+1) 5 & 5.4 .8+(x+1) 15 p
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
\frac{-4.8+5 w}{-\frac{1.64}{8+5(x+1)}} & \frac{-14.4+15 w p}{-4.84} \\
24+15(x+1) p
\end{array}\right]
$$

$$
\left.=\begin{array}{cc}
13+5 x \\
\frac{-33.8}{-5} & \frac{-6}{52.8}
\end{array}\right]
$$

i. Find the value of each variable, given $Q=\left[\begin{array}{cc}-33.8 & -6 \\ -5 & -15 \\ 52.8 & 21\end{array}\right]$ and $C D=Q$.
i. Find the value of each variable, given $Q=\left[\begin{array}{cc}-33.8 & -6 \\ -5 & -15 \\ 52.8 & 21\end{array}\right]$ and $C D=Q$.

JV) $\pm-4.8+5 \underline{w}=-33.8$
4) $A-4.84=-15$
2) $-14.4+15$ 改 $=-6$
5) $\Rightarrow 13+5 \underline{x}=52.8$
3) $*-1.6 y=-5$
b) $24+15(x+1)_{\rho}=21$

1) $\begin{aligned} & -4.8+5 w= \\ & +43.8 \\ & +4.8\end{aligned} \rightarrow \frac{5 w}{5}=\frac{-29}{5}$
2) $\quad \frac{-1.6 y}{-1.6}=\frac{-5}{-1.6}$

$$
w=\frac{-29}{5}
$$

$y=\frac{5}{1.6}=3.125 \sim$ fraction
4)

$$
\operatorname{sef}_{-13}^{13+5 x}=\begin{gathered}
52.8 \\
-13
\end{gathered} \int^{>}
$$

$$
\begin{aligned}
& \frac{5 x}{5}=\frac{39.8}{5} \\
& x=7.96 \\
&-14.4+15\left(-\frac{2 a}{5}\right) p=-6 \\
&-14.4-87 p=-6 \\
&+14.4+14.4 \\
&-87 p=8.4 \\
& p=\frac{-8.4}{87}
\end{aligned}
$$

Pr 2. An online streaming service records the number of downloads of movies and series based upon which studio produced the movie or series. During the month of January 3000 animated series, 6500 animated movies, 6200 live action series, 5000 live action movies, 1200 documentary series, and 6800 documentary movies were downloaded, while in February the downloads were 3800, 2900, 2600, 5100, 6500, and 9500 respectively.
a. The streaming service is considering charging per film or series download, instead of the traditional subscription service. If the online streaming service charges $\$.99$ per movie download and $\$ 1.99$ per series download, write a matrix equation that would allow the service to compute how much they make for each studio.

b. How much income does the online streaming service bring in, in January, from each studio?
c. How much income does the online streaming service bring in, for January and February combined, from each studio?

