Note $\sharp 7$: Exam 03 Review

Problem 1. Calculate the double integral.

$$
\iint_{R} 2 x y e^{x y^{2}} d A, \quad R=[0,1] \times[0,2]
$$

Problem 2. Evaluate the iterated integral.

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} e^{x^{2}+y^{2}} d y d x
$$

Problem 3. Sketch the region of integration and evaluate the integral.

$$
\int_{0}^{1} \int_{2 \sqrt{x}}^{2} \sqrt{y^{3}+1} d y d x
$$

Problem 4. Find the volume of the solid that is enclosed by the paraboloids $x=y^{2}+z^{2}$ and $x=3-2 y^{2}-2 z^{2}$.

Problem 5. Express the integral $\iiint_{E} f(x, y, z) d V$ as an iterated integral in the order $d y d z d x$, where E is the solid bounded by the given surfaces.

$$
y=x^{2}, \quad z=0, \quad 2 y+z=2
$$

Problem 6. Find the volume of the solid tetrehedron with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$ using triple integral.

Problem 7. (a) Change $(2,-2 \sqrt{3}, 5)$ from rectangular to cylindrical coordinates.
(b) Change $(\sqrt{3},-1,-2 \sqrt{3})$ from rectangular to spherical coordinates.

Problem 8. Find the volume of the solid below the cone $z=\sqrt{4 x^{2}+4 y^{2}}$ and above the ring $4 \leq x^{2}+y^{2} \leq 9$, where the ring is in the $x y$-plane and to the left of the y-axis.
Problem 9. Compute $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x$.
Problem 10. Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where E lies above the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$ and between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.

Problem 11. Find the absolute value of the Jacobian of the transformation $x=u^{2}+u v, \quad y=u v^{2}$ evaluated at $u=1, v=-2$.

Problem 12. Use the transformation $u=x-y, v=x+y$ to rewrite

$$
\iint_{R} x^{2}-y^{2} d A
$$

where R is the square with vertices $(2,0),(0,2),(-2,0)$, and $(0,-2)$. Do not evaluate the integral.
Problem 13. Use the given transformation to evaluate the integral

$$
\iint_{R}(x+2 y) e^{x^{2}-4 y^{2}} d A
$$

where R is the parallelogram enclosed by the lines $x+2 y=0, x+2 y=5, x-2 y=0$, and $x-2 y=4 ; u=x+2 y, v=x-2 y$.

