## Math 308: Week-in-Review 3

## Shelvean Kapita

1. Determine (without solving the problem) an interval in which the solution of the following initial
value problem is certain to exist.
(a)

$$
y^{\prime}+(\cot x) y=x, \quad \overbrace{y(\pi / 2)=9}^{\text {IC }}
$$

$$
* y^{\prime}+p(x) y=g(x) *
$$

(b) standard first order linear * $p(x), g(x)$ continuous on an interval $I \Rightarrow$ there exists a unique solution on I satisfying the initial condition

* the solution with IC $y(\pi / 2)=9$ exists in
the interval $I=(0, \pi)$ where cot $x$ is continuous
* $\cot x$ is discontinuous at all points $x= \pm n \pi$ for integer $n$

2. State where in the $t y$-plane the hypothesis of the Existence and Uniqueness Theorem are satisfied for the following differential equations
(a)

$$
y^{\prime}=\frac{t-y}{2 t+5 y}, f(t, y)=\frac{t-y}{2 t+5 y}(2 t+5 y) y^{\prime}=t-y
$$

* $f$ is continuous when $2 t+5 y \neq 0$, i.e. $y \neq \frac{-2}{5} t$

$$
* \frac{\partial f}{\partial y}=\frac{-(2 t+5 y)-5(t-y)}{(2 t+5 y)^{2}}=\frac{-7 t}{(2 t+5 y)^{2}}
$$

* Existence \& Uniqueness Thu unique solution on some interval where
* $f(x, y)$ is continuous
* $\frac{\partial f}{\partial y}(x, y)$ is continuous

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}
$$

$* \frac{\partial f}{\partial y}$ is continuous when $2 t+5 y \neq 0$ i.e. $y \neq \frac{-2}{5} t$

$$
y=\frac{-2}{5} t \text { all points minus the line }
$$

$$
y=-2 / 5 t
$$

$$
f(t, y)=\frac{\ln (t y)}{y-t^{2}}
$$

* f defined when ty $>0$ and $y \neq t^{2}$

$$
\begin{aligned}
* \frac{\partial f}{\partial y} & =\frac{t \cdot \frac{1}{t y}\left(y-t^{2}\right)-\ln (t y)}{\left(y-t^{2}\right)} \\
& =\frac{y-t^{2}-y \ln (t y)}{y\left(y-t^{2}\right)}
\end{aligned}
$$

$\begin{aligned} & * \frac{\partial f}{\partial y} \text { defined when } t y>0, \\ & y \neq t^{2} \text { and } y \neq 0\end{aligned}$ $y \neq t^{2}$ and $y \neq 0$ not $x$-axis
3. Solve the following initial value problems and determine how the interval in which the solution exists depends on $y_{0}$. IC
(a) $y^{\prime}=y^{2}, \quad$ y(0) $=y_{0}$ non linear, separable

$$
\begin{aligned}
\int \frac{1}{y^{2}} d y & =\int d x \\
-\frac{1}{y} & =x+C
\end{aligned}
$$

plug in IC

$$
\begin{aligned}
& c=-1 / y_{0} \\
& \frac{-1}{y}=x-\frac{1}{y_{0}} \\
& y=\frac{-1}{x-\frac{1}{y_{0}}}=\frac{y_{0}}{1-x y_{0}} \\
& y=\frac{y_{0}}{1-x y_{0}}
\end{aligned}
$$



$$
\frac{y^{2}}{2}=-4 \frac{t^{2}}{2}+C
$$

$y$ is defined when

Equilibrium sols

$$
y^{2}=0 \Rightarrow y(t)=0
$$

and $y(0)=y_{0}=0$
for all $x \in \mathbb{R}$


$$
x=1 / y_{0}
$$

* if $y_{0}<0$, then $x>\frac{1}{y_{0}}$




4. Verify that both $y_{1}=1-t$ and $y_{2}=-\frac{t^{2}}{4}$ are solutions to the same initial value problem

$$
y^{\prime}(t)=\frac{-t+\sqrt{t^{2}+4 y}}{2}, \quad y(2)=-1 .
$$

$$
f(t, y)=\frac{-t+\sqrt{t^{2}+4 y}}{2}
$$

Does the existence of two solutions to the same initial value problem contradict the Existence and

$$
\begin{aligned}
\text { * } y_{1}=1-t \Rightarrow y_{1}^{\prime}=-1, \frac{-t+\sqrt{t^{2}+4(1-t)}}{2} & =\frac{-t+\sqrt{t^{2}-4 t+4}}{2} \\
& =\frac{-t+\sqrt{(t-2)^{2}}}{2} \\
& =\frac{-t+t-2}{2} \\
& =-\frac{1 \sqrt{2} y_{1} \text { is a solution }}{2} \\
* y_{2}=-\frac{t^{2}}{4}, y_{2}^{\prime}=-\frac{t}{2},-\frac{\left.t+\sqrt{t^{2}+4\left(-t^{2} / 4\right.}\right)}{2} & =\frac{-t+\sqrt{0}}{2} \\
& =\frac{-\frac{t}{2}}{2} y \text { is a solution }
\end{aligned}
$$

* $f(t, y)=\frac{-t+\sqrt{t^{2}+4 y}}{2}$ is continuous when $t^{2}+4 y \geqslant 0 \Rightarrow y \leqslant \frac{-t^{2}}{4}$ * $f(t, y)$ is continuous at

$$
(2,-1)
$$


$\begin{aligned} & * \frac{\partial f}{\partial y}(t, y)=\frac{1}{4}\left(t^{2}+4 y\right) \cdot 4 \\ &=\frac{1}{\sqrt{t^{2}+4 y}} \\ & * \frac{\partial f}{\partial y}(t, y) \text { is contimons }\end{aligned}$
5. Given the differential equation

$$
y^{\prime}=y^{2}\left(9-y^{2}\right)
$$

(a) Find the equilibrium solutions.
(b) Graph the phase line. Classify each equilibrium solution as either stable, unstable, or semistable
(c) Graph some solutions
(d) If $y(t)$ is the solution of the equation satisfying the initial condition $y(0)=y_{0}$ for some $y_{0} \in$ $(-\infty, \infty)$, find the limit of $y(t)$ as $t \rightarrow \infty$
(a) $f(y)=y^{2}\left(9-y^{2}\right)=y^{2}(3-y)(3+y)=0 \Rightarrow y=-3,0,3$
(b)
(c) $y=3$

-3
unstable
semistable
stable
$y=0$
$y=-3$
$y$

(d) $* y_{0}<-3, \lim _{t \rightarrow \infty} y(t)=-\infty \quad y_{0}=0, \lim _{t \rightarrow \infty} y(t)=0$

* $0<y<3, \lim _{t \rightarrow \infty} y(t)=3$
* $\quad y_{0}=-3 \quad \lim _{t \rightarrow \infty} y(t)=-3$
$*-3<y_{0}<0 \quad \lim _{t \rightarrow \infty} y(t)=0$
* $y_{0}=3, \lim _{t \rightarrow \infty} y(t)=3$
$* y_{0}>3, \lim _{t \rightarrow \infty} y(t)=3$

6. Suppose a certain population obeys the logistic equation

$$
\frac{d y}{d t}=r y\left(1-\frac{y}{K}\right) .
$$



If $y_{0}=K / 4$ find the time $\tau$ at which the initial population has doubled. Find the value of $\tau$
corresponding to $r=0.05$.

$$
\begin{aligned}
\frac{1}{y(1-y / k)} d y & =\int r d t \\
\frac{1}{y(1-y / k)} & =\frac{A}{y}+\frac{B}{1-y / k} \\
1 & =A(1-y / k)+B y \\
y=0: A & =1, y=k, B=1 / K
\end{aligned}
$$

initial conditions $y_{0}=k / 4$

$$
\frac{k / 4}{1-(k / 4) / k}=k / 3=C
$$

$$
\begin{aligned}
& \frac{y}{1-y / 1 x}=\frac{k}{3} e^{r t} \\
& y=\frac{k}{3} e^{r t}-\frac{y}{3} e^{r t} \\
& y\left(1+\frac{1}{3} e^{r t}\right)=\frac{k}{3} e^{r t}
\end{aligned}
$$

$$
y=\frac{k e^{r t}}{3\left(1+\frac{1}{3} e^{r t}\right)}=\frac{k e^{r t}}{e^{r t}+3}
$$

$$
y=\frac{k}{1+3 e^{-r t}}
$$

check:

$$
y(0)=\frac{k}{1+3}=\frac{k}{4}
$$

Doubling time: Find $t$ whew

$$
\begin{aligned}
& y=k / 2 \\
& \frac{k}{2}=\frac{k}{1+3 e^{-r t}} \\
& \frac{1}{2}=\frac{1}{1+3 e^{-r t}} \\
& 1+3 e^{-r t}=2 \\
& 3 e^{-r t}=1 \\
& e^{-r t}=1 / 3 \\
&-r t=\ln \left(\frac{1}{3}\right) \\
& r t=\ln (3) \\
& r=\frac{1}{r} \ln (3) \\
& r=0.05 \Rightarrow \tau=\frac{1}{0.05} \ln (3) \\
& \tau=21.97
\end{aligned}
$$

7. Determine if the differential equation is exact. If it is exact, solve it. You may leave your solution in implicit form.
(a)

$$
\begin{aligned}
F_{x} & =3 x^{2} y+e^{y}, F_{y}=x^{3}-x e^{y}-2 y \\
F(x, y) & =\int\left(3 x^{2} y+e^{y}\right) d x \\
& =x^{3} y+x e^{y}+h(y) \\
F_{y} & =x^{3}+x e^{y}+h^{\prime}(y) \\
& F(x, y)=x y+x e^{y}-y^{2}+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \underbrace{\left(3 x^{2} y+8 x y^{2}\right.}_{\boldsymbol{M}})+\underbrace{\left(x^{3}+8 x^{2} y+12 y^{2}\right)}_{\mathbf{N}} y^{\prime}=0 . \\
& F_{x}=3 x^{2} y+8 x y^{2} \\
& F(x, y)=\int\left(3 x^{2} y+8 x y^{2}\right) d x \\
& =x^{3} y+4 x^{2} y^{2}+h(y) \\
& F_{y}=x^{3}+8 x^{2} y+h^{\prime}(y) \\
& h^{\prime}(y)=12 y^{2} \\
& h(y)=\int 12 y^{2} d y \\
& =4 y^{3}+c \\
& F(x, y)=x^{3} y+4 x^{2} y^{2}+4 y^{3}+c
\end{aligned}
$$

8. Consider the differential equation

$$
(-x y \sin x+2 y \cos x) d x+2 x \cos x d y=0
$$

Show that it is not exact, and that it becomes exact when multiplied by the integrating factor $\mu(x, y)=x y$. Solve. * check if equation is exact

$$
\begin{gathered}
M=-x y \sin x+2 y \cos x, N=2 x \cos x \\
M y=-x \sin x+2 \cos x, N_{x}=2 \cos x-2 x \sin x \\
m_{y} \neq N_{x} \text { not exact }
\end{gathered}
$$

* Multiply equation by $\mu(x, y)=x y$ (integrating factor)

$$
\begin{aligned}
m=-x^{2} y^{2} \sin x+2 x y^{2} \cos x, N & =2 x^{2} y \cos x \\
m_{y}=-2 x^{2} y \sin x+4 x y \cos x, N_{x} & =y\left(4 x \cos x-2 x^{2} \sin x\right) \\
& =-2 x^{2} y \sin x+4 x y \cos x
\end{aligned}
$$

now exact
integration by $L^{\text {integrarts }} 2$

$$
F_{x}=-x^{2} y^{2} \sin x+2 x y^{2} \cos x \Rightarrow F(x, y)=\int_{1}\left(-x^{2} y^{2} \sin x+2 x y^{2} \cos x\right) d x
$$

* Let's see if integral in $y$ is easier!

$$
\begin{aligned}
F_{y}=2 x^{2} y \cos x \Rightarrow F(x, y) & =\int 2 x^{2} y \cos x d y \\
& =x^{2} y^{2} \cos x+h(x) \\
F_{x} & =2 x y^{2} \cos x-x^{2} y^{2} \sin x+h^{\prime}(x) \\
& =M \Rightarrow h^{\prime}(x)=0 \Rightarrow h(x)=C
\end{aligned}
$$

$$
F(x, y)=x^{2} y^{2} \cos x+C
$$

