Math 308: Week-in-Review 6

Shelvean Kapita

1. Find the general solution of the following equation

$$
y(t)=y_{c}(t)+y_{p}(t)
$$

(a)

* Find yo y^{*} particular
variation of parameter: $y_{p}=u_{1} y_{1}+u_{2} y_{2}=u_{1} e^{t}+u_{2} e^{t / 2}$

(a) divide by $2 \rightarrow$ standard form
$u_{2}^{\prime}=\frac{e^{t} \cdot \frac{1}{2}\left(t^{2}+1\right) \cdot e^{t}}{-\frac{1}{2} e^{3 / 2 t}}=-e^{t / 2}\left(t^{2}+1\right)$

(b) Solve the initial value problem

$$
y(t)=c_{1} e^{t}+c_{2} e^{t / 2}+e^{t}\left(\frac{t^{3}}{3}-2 t^{2}+9 t-18\right)
$$

$$
3 y^{\prime \prime}+4 y^{\prime}+y=(\sin t) e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=0 . \quad y(t)=y_{c}(t)+y_{p}(t)
$$

$*$ Find $y_{c}(t) * 3 \lambda^{2}+4 \lambda+1=0 \Rightarrow \lambda=\frac{-4 \pm \sqrt{16-12}}{6}=\frac{-4 \pm 2}{6}=-1,-1 / 3 \Rightarrow y_{1}=e^{-t}, y_{2}=e^{-t / 3}$ homogeneous

* Find $y_{p} *$ variation of parameters:

$$
u_{1}^{\prime}=-\frac{y_{2} r}{w}=\frac{-e^{-t / 3} \cdot \frac{1}{3} \sin t \cdot e^{-t}}{2 / 3 e^{-4 / 3} t}=-\frac{1}{2} \sin t \Rightarrow u_{1}=\frac{r}{2} \cos t
$$

$$
u_{2}^{\prime}=\frac{y_{1} r}{w}=\frac{e^{-t} \frac{1}{3} \sin t \cdot e^{-t}}{2 / 3 e^{-4 / 3}}=\frac{1}{2} \sin t \cdot e^{-2 / 3 t} \Rightarrow y_{p}=\frac{1}{2} e^{-t} \cos t-\frac{3}{13} e^{-t} \sin t-\frac{9}{26} e^{-t} \cos t
$$

* integrate by $u_{2}=\frac{-3}{13} e^{-2 t / 3} \sin (t)-\frac{9}{26} e^{-2 t / 3} \cos (t)=\frac{2}{13} e^{-t} \cos t-\frac{3}{13} e^{-t} \sin t$
* plugin initial conds: $y(0)=1, y^{\prime}(0)=0$

$$
y(t)=c_{1} e^{-t}+c_{2} e^{-t / 3}+\frac{1}{13}\left(2 e^{-t} \cos t-3 e^{-t} \sin t\right)
$$

$$
c_{2}=\frac{24}{13}, c_{1}=-1
$$

2. Find two linearly independent solutions of $t^{2} y^{\prime \prime}-2 y=0$ of the form $y(t)=t^{r}$. Using these solutions, find the general solution of $t^{2} y^{\prime \prime}-2 y=t^{2}$.

$$
y(t)=t^{r} \Rightarrow y^{\prime}(t)=r t^{r-1}, y^{\prime \prime}(t)=r(r-1) t^{r-2}
$$

* plug into equation *

$$
\begin{aligned}
& t^{2} \cdot r(r-1) \cdot t^{r-2}-2 t^{r}=t^{r}[r(r-1)-2]=t^{r}[(r+1)(r-2)]=0 \\
& r=-1,2 \Rightarrow y_{1}=t^{-1}=\frac{1}{t} \text { and } y_{2}=t^{2}
\end{aligned}
$$

* standard form eqn: $y^{\prime \prime}-2 / t^{2} y=1$
* variation of parameters: $y_{p}(t)=u_{1} y_{1}+u_{2} y_{2}$

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{y_{2} r}{w}, u_{2}^{\prime}=\frac{y_{1} r}{w}, \text { where } w=\left|\begin{array}{cc}
t^{-1} & t^{2} \\
-t^{-2} & 2 t
\end{array}\right|=2+1=3 \\
& u_{1}^{\prime}=-\frac{t^{2}}{3} \Rightarrow u_{1}=-t^{3} / q, \quad u_{2}^{\prime}=\frac{t^{-1}}{3} \Rightarrow u_{2}=\frac{1}{3} \ln |t|
\end{aligned}
$$

* $y_{p}(t)=-\frac{1}{9} t^{3} \cdot t^{-1}+\frac{1}{3} t^{2} \ln |t|$ particular solution

$$
=-\frac{1}{9} t^{2}+\frac{1}{3} t^{2} \ln |t|
$$

$$
y_{p}=t^{2}\left(\frac{1}{3} \ln |t|-\frac{1}{9}\right)
$$

$$
\text { * } y(t)=c_{1} t^{-1}+c_{2} t^{2}+t^{2}\left(\frac{1}{3} \ln |t|-\frac{1}{9}\right)
$$

$$
y(t)=C_{1} t^{-1}+C_{2} t^{2}+\frac{1}{3} t^{2} \ln |t| \quad \begin{array}{ll}
\text { where } C_{1}=c_{1} \\
C_{2}=c_{2}-1 / 9
\end{array}
$$

3. One solution of $4 t^{2} y^{\prime \prime}+4 t y^{\prime}+\left(16 t^{2}-1\right) y=0, t>0$ is $y(t)=t^{-1 / 2} \cos (2 t)$. Find the general solution of $4 t^{2} y^{\prime \prime}+4 t y^{\prime}+\left(16 t^{2}-1\right) y=16 t^{3 / 2}$.

* Set $y_{1}=t^{-1 / 2} \cos (2 t)$ then find y_{2} using Liouville's formula*

$$
\begin{aligned}
& y_{2}=y_{1} \int \frac{e^{-\int p(t) d t}}{y_{1}^{2}} d t \\
& =t^{-1 / 2} \cos (2 t) \int \frac{t^{-1}}{t^{-1} \cos ^{2}(2 t)} d t \\
& =t^{-1 / 2} \cos (2 t) \int \sec ^{2}(2 t) d t \\
& =t^{-1 / 2} \cos (2 t) \frac{1}{2} \tan (2 t) \\
& =\frac{1}{2} t^{-1 / 2} \cos (2 t) \frac{\sin (2 t)}{\cos (2 t)} \\
& y_{2}=t^{-1 / 2} \sin (2 t) \\
& \text { solution } \\
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \quad r(t)=\frac{16 t^{3 / 2}}{4 t^{2}}=4 t^{-1 / 2} \\
& u_{1}^{\prime}=-\frac{y_{2} r}{w}=-\frac{t^{-1 / 2} \sin (2 t) \cdot 4 t^{-1 / 2}}{2 t^{-1}}=-2 \sin (2 t) \\
& u_{2}^{\prime}=\frac{y_{1} r}{w}=\frac{t^{-1 / 2} \cos (2 t) 4 t^{-1 / 2}}{2 t^{-1}}=2 \cos (2 t) \\
& u_{1}=\cos (2 t) \quad u_{2}=\sin (2 t) \\
& \text { * } y_{p}=t^{-1 / 2} \cos ^{2}(2 t)+t^{-1 / 2} \sin ^{2}(2 t)=t^{-1 / 2}\left(\cos ^{2}(2 t)+\sin ^{2}(2 t)\right)=t^{-1 / 2} \\
& y(t)=y_{c}+y_{p}=c_{1}^{-1 / 2} \cos (2 t)+c_{2} t \sin (2 t)+t^{-1 / 2}
\end{aligned}
$$

4. A mass weighing 3 lb stretches a spring 3 in . If the mass is pushed upward, contracting the spring a distance of 1 in , then set in motion with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period, amplitude, and phase angle of the motion.

$$
m y^{\prime \prime}+c y^{\prime}+k y=F_{e x t}
$$

$$
k=\frac{3 l b}{(3 / 12)}=12 \mathrm{lb} / \mathrm{ft}
$$

downward

$$
\begin{aligned}
& y(0)=-1 \text { in }=-1 / 12 f t \quad F_{\text {ext }}=0 \\
& y^{\prime}(0)=2 \mathrm{ft} / \mathrm{s} \\
& \left\{\begin{array}{l}
\frac{3}{32} y^{\prime \prime}+12 y=0 \\
y(0)=-1 / 12 \\
1 \\
y^{\prime}(0)=2
\end{array}\right.
\end{aligned}
$$

$$
m=\frac{3}{32} \operatorname{slng}, c=0 \text {, no damping }
$$

$*$ weight (lb) $=\operatorname{mass}$ (slug)

$$
x g\left(f t / s^{2}\right)^{*}
$$

g (acceleration due to gravity)

$$
\approx 32 \mathrm{ft} / \mathrm{s}^{2}
$$

$$
\lambda^{2}+128=0
$$

$$
\Rightarrow \lambda= \pm \sqrt{128} i= \pm 8 \sqrt{2} i
$$

$$
y(t)=c_{1} \cos (8 \sqrt{2} t)+c_{2} \sin (8 \sqrt{2} t)
$$

$$
y^{\prime}(t)=-8 \sqrt{2} c_{1} \sin (8 \sqrt{2} t)+8 \sqrt{2} c_{2} \cos (8 \sqrt{2} t)
$$

$$
y(0)=c_{1}=-1 / 12, y^{\prime}(0)=8 \sqrt{2} c_{2}=2
$$

$$
c_{2}=\frac{2}{8 \sqrt{2}}=\frac{1}{4 \sqrt{2}}
$$

$$
\begin{aligned}
y(t) & =-\frac{1}{12} \cos (8 \sqrt{2} t)+\frac{1}{4 \sqrt{2}} \sin \\
& =A \cos (8 \sqrt{2} t-\varphi)
\end{aligned}
$$

* frequency $=\omega=8 \sqrt{2} \mathrm{rad} / \mathrm{sec}$
* period $=T=\frac{2 \pi}{\omega}=\frac{\pi}{4 \sqrt{2}} \sec$
where $A=\sqrt{c_{1}^{2}+c_{2}^{2}} *$ amplitude $*$

$$
\begin{aligned}
& =\sqrt{\left(-\frac{1}{12}\right)^{2}+\left(\frac{1}{4 \sqrt{2}}\right)^{2}} \\
& =\sqrt{\frac{1}{144}+\frac{1}{32}}=\sqrt{\frac{11}{288}}
\end{aligned}
$$

$$
\tan \varphi=\frac{c_{2}}{c_{1}}=\frac{\frac{1}{4 \sqrt{2}}}{-1 / 12}=-\frac{3}{\sqrt{2}}
$$

$Q=\pi+\tan ^{-1}\left(-\frac{3}{\sqrt{2}}\right) *$ phase angle * * because we are in Quadrant II *
5. A spring is stretched 10 cm by a force of 3 N . A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass is $5 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down 5 cm below its equilibrium position and given an initial velocity of $10 \mathrm{~cm} / \mathrm{s}$, determine its position u at any time. Find the quasifrequency of the motion.

$$
m y^{\prime \prime}+c y^{\prime}+k y=F_{\text {ext }}, \quad F_{\text {ext }}=0 \quad * m=2 k g
$$

* Initial value problem *
* $k=\frac{3}{0.1}=30 \mathrm{~N} / \mathrm{m}$
* $C=3 / 5 \mathrm{~N} /(\mathrm{m} / \mathrm{s})=\frac{N s}{\mathrm{~m}}$ (damping)

$$
10 \lambda^{2}+3 \lambda+150=0
$$

$$
y(t)=c_{1} e^{-\frac{3}{20} t} \cos \left(\frac{\sqrt{5991}}{20} t\right)+c_{2} e^{-\frac{3}{20} t} \sin \left(\frac{\sqrt{59911}}{20}\right)
$$

$$
\lambda=\frac{-3 \pm \sqrt{3^{2}-4 \cdot 10.150}}{20}
$$

$$
y^{\prime}(t)=\frac{-3}{20} c_{1} e^{-\frac{3}{20} t} \cos \left(\frac{\sqrt{5991}}{20}\right)-\frac{\sqrt{5991}}{20} c_{1} e^{-\frac{3}{20} t} \sin \left(\frac{\sqrt{5991}}{20} t\right) \quad=\frac{-3 \pm \sqrt{9-6000}}{20}
$$

$$
-\frac{3}{20} c_{2} e^{-3 / 2 t} \sin \left(\frac{\sqrt{5991}}{20} t\right)+\frac{\sqrt{5991}}{20} c_{2} e^{-\frac{3}{20} t} \cos \left(\frac{\sqrt{5991}}{20} t\right) \quad \lambda=\frac{-3}{20} \pm \frac{\sqrt{5991}}{20} i
$$

* Quasifrequency $\frac{\sqrt{5991}}{20} \mathrm{rad} / \mathrm{sec}$
$y(0)=c_{1}=0.05$
$y^{\prime}(0)=-\frac{3}{20} c_{1}+\frac{\sqrt{5991}}{20} c_{2}=-\frac{3}{20} \cdot(0.05)+\frac{\sqrt{5991}}{20} c_{2}=0.1$

$$
\Rightarrow \quad c_{2}=\frac{\frac{2}{20}+\frac{3}{20}(0.06)}{\sqrt{5991 / 26}}=\frac{2.15}{\sqrt{5991}}
$$

$$
y(t)=0.05 e^{-\frac{3}{20} t} \cos \left(\frac{\sqrt{5991}}{20} t\right)+\frac{2.15}{\sqrt{5991}} e^{-\frac{3}{20} t} \sin \left(\frac{\sqrt{5991}}{20} t\right)
$$

6. A spring is stretched 6 in by a mass that weighs 8 lb . The mass is attached to a dashpot mechanism that has a damping constant of $0.25 \mathrm{lb} \mathrm{s} / \mathrm{ft}$. and is acted on by an external force of $4 \cos (2 t) \mathrm{lb}$.
(a) Find the steady-state response of this system.
(b) If the given mass is replaced by a mass m, determine the value of m for which the amplitude of the steady state response is maximum.
(c) If the mass is the same as in the problem, determine the value of ω of the frequency of the external force $4 \cos (\omega t)$ at which "practical resonance" occurs, i.e. the amplitude of the steadystate response is maximized.

$$
\begin{array}{ll}
m y^{\prime \prime}+c y^{\prime}+k y=\left(F_{0} \cos (\omega \sigma t)\right. & m=\frac{8 \mathrm{lb}}{32 \mathrm{ft} / \mathrm{s}^{2}}=1 / 4 \mathrm{slug} \\
\frac{1}{4} y^{\prime \prime}+\frac{1}{4} y^{\prime}+16 y=4 \cos (2 \mathrm{t}) & F_{\text {ext }}=4 \cos (2 t) \mathrm{lb} \\
y=y_{c}+y_{p} \rightarrow \text { steady state } & k=\frac{8 l \mathrm{~b}}{(6 / 12) \mathrm{ft}}=16 \mathrm{lb} / \mathrm{ft} \\
& c=0.25 \mathrm{lbs} / \mathrm{ft}
\end{array}
$$

$$
* y_{c}(t)=c_{1} e^{-t / 2} \cos \left(\frac{\sqrt{255}}{2} t\right)+c_{2} e^{-t / 2} \sin \left(\frac{\sqrt{255}}{2} t\right)
$$

$$
\begin{gathered}
m y^{\prime \prime}+c y^{\prime}+k y=F_{0} \cos (\omega t) \\
m\left(-A \omega^{2} \cos \omega t-B \omega^{2} \sin \omega t\right)+c(-A \omega \sin \omega t+B \omega \cos \omega t)+k(A \cos \omega t+B \sin \omega t)=F_{0} \cos \omega t \\
* \cos \omega t *:\left(k-m \omega^{2}\right) A+(c \omega) B=F_{0} \quad * \sin \omega t * \cdot(-c \omega) A+\left(k-m \omega^{2}\right) B=0 \\
\left(k-m \omega^{2}\right) A+\frac{(c \omega)^{2} A}{k-m \omega^{2}}=F_{0} \quad B=\frac{c \omega A}{k-m \omega^{2}} \\
F_{0}\left(k-m \omega^{2}\right)
\end{gathered}
$$

* Find homogeneous soln*

$$
y=y_{p}=A \cos (\omega t)+B \sin (\omega t) \quad * \text { no resonance* } \quad \lambda=-\frac{1}{2} \pm \frac{\sqrt{255}}{2} i
$$

$$
A\left[\left(k-m \omega^{2}\right)+\frac{(c \omega)^{2}}{k-m \omega^{2}}\right]=F_{0} \Rightarrow A=\frac{F_{0}\left(k-m \omega^{2}\right)}{\left(k-m \omega^{2}\right)+(c \omega)^{2}}
$$

$$
B=\frac{F_{0}(c \omega)}{\left(k-m \omega^{2}\right)+(c \omega)^{2}} \quad \begin{aligned}
& y_{p}=\frac{F_{0}\left(k-m \omega^{2}\right)}{\left(k-m \omega^{2}\right)+(c \omega)^{2}} \cos \omega t+\frac{F_{0}(c \omega)}{\left(k-m \omega^{2}\right)+\left((\omega)^{2}\right.} \sin \omega t^{*} \text { steady state solution * }
\end{aligned}
$$

(a) $F_{0}=4, w=2, k=16, m=1 / 4, c=1 / 4$.

Plug in these values to get y_{p}
(b)

$$
\begin{aligned}
R & =\sqrt{A^{2}+B^{2}} \\
& =\sqrt{\frac{F_{0}^{2}\left(k-m \omega^{2}\right)^{2}+F_{0}^{2}(c \omega)^{2}}{\left[\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}\right]^{2}}} \\
& =\frac{F_{0}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}} * \text { amplitude } *
\end{aligned}
$$

R is maximized exactly when $f(m)=(k-m \omega)^{2}+(c \omega)^{2}$ is minimized

$$
f(m)=(16-4 m)^{2}+\left(\frac{1}{2}\right)^{2}=(16-4 m)^{2}+\frac{1}{4}
$$

$f(m)$ is minimum when $16-4 m=0 \Rightarrow m=4$ slug
(c) minimize $g(\omega)=\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}$

$$
\begin{aligned}
&=\left(16-\frac{1}{4} \omega^{2}\right)^{2}+\left(\frac{1}{4} \omega\right)^{2} \\
& g^{\prime}(\omega)=0 \Rightarrow 2\left(16-\frac{1}{4} \omega^{2}\right)\left(-\frac{1}{2} \omega\right)+2\left(\frac{1}{4} \omega\right)\left(\frac{1}{4}\right) \\
&=-\omega\left(16-\frac{1}{4} \omega^{2}\right)+\frac{1}{8} \omega \\
&\left.\frac{1}{8} \omega\right)^{\prime}=\omega\left(16-\frac{1}{4} \omega^{2}\right) \Rightarrow \frac{1}{8}=16-\frac{1}{4} \omega^{2} \\
& \frac{1}{4} \omega^{2}=16-\frac{1}{8} \Rightarrow \omega^{2}=64-\frac{1}{2} \\
& \omega_{\text {res }}=\sqrt{64-1 / 2}=\sqrt{63.5} \frac{\mathrm{rad}}{\mathrm{sec}}
\end{aligned}
$$

(which is slightly less than the natural frequency of $\omega_{0}=\sqrt{\frac{k}{m}}=\sqrt{\frac{161 / 4}{1 / 4}}=\sqrt{64} \mathrm{rad} / \mathrm{sec}$)

