Note $\sharp 1$: Sections 12.1-12.5

Problem 1. a) Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}-x+4 y-10 z-1=0$.
b) Find the equation of the sphere with center $(1,4,3)$ that touches the $x y$ plane.

Problem 2. For the picture seen below, write \mathbf{v} in terms of \mathbf{u} and \mathbf{w}.

Problem 3. Given $\mathbf{a}=\langle 1,-1,5\rangle$ and $\mathbf{b}=\langle-3,2,1\rangle$,
a) find a unit vector in the direction of $\mathbf{a}+2 \mathbf{b}$.
b) find the vector that has the same direction as $\mathbf{a}+2 \mathbf{b}$ but has length 4 .

Problem 4. Compute $\mathbf{a} \cdot \mathbf{b}$ if
a) $\mathbf{a}=\langle 4,5,-1\rangle$ and $\mathbf{b}=\langle 2,1,3\rangle$.
b) $|\mathbf{a}|=2,|\mathbf{b}|=5$ and $\theta=120^{\circ}$.
c) $|\mathbf{a}|=6,|\mathbf{b}|=4$ and \mathbf{a} is perpendicular to \mathbf{b}.
d) $|\mathbf{a}|=6,|\mathbf{b}|=4$ and \mathbf{a} is parallel to \mathbf{b}.

Problem 5. The points $A(0,-1,6), B(2,1,-3)$ and $C(5,4,2)$ form a triangle. Find $\angle C$.
Problem 6. Let \mathbf{a}, \mathbf{b}, and \mathbf{c} be three dimensional vectors. Which of the following expressions are meaningful? Which are meaningless?
a) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})$
b) $\mathbf{a} \cdot \mathbf{b}+\mathbf{c}$

Problem 7. Determine whether the given vectors are orthogonal, parallel, or neither.
a) $\mathbf{a}=\langle 3,-1,2\rangle, \quad \mathbf{b}=\langle 6,-2,4\rangle$
b) $\mathbf{a}=\langle 1,2,-1\rangle, \quad \mathbf{b}=\langle 2,3,-1\rangle$
c) $\mathbf{a}=2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}, \quad \mathbf{b}=-2 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$

Problem 8. Find the scalar and vector projections of $\langle 2,4,6\rangle$ onto $\langle 1,3,5\rangle$.
Problem 9. Find the cross product of $\langle 1,1,3\rangle$ and $\langle-2,-1,-5\rangle$.
Problem 10. Find $|\mathbf{u} \times \mathbf{v}|$ and determine if $\mathbf{u} \times \mathbf{v}$ points in or out of the page.

Problem 11. Find the area of the parallelogram determined by $\mathbf{a}=\langle 3,0,2\rangle$ and $\mathbf{b}=\langle 1,-4,5\rangle$.
Problem 12. Find a vector equation of the line that passes through the point $(2,-5,1)$ and is parallel to the vector $\langle 8,10,-7\rangle$.

Problem 13. Find parametric equations and a symmetric equation for the line passing through the points $(-2,3,4)$ and $(5,2,8)$.

Problem 14. Find an equation of the plane passing through the point $(3,4,5)$ and perpendicular to $\langle-1,2,5\rangle$.

Problem 15. Find an equation of the plane passing through the point $(1,5,-3)$ and perpendicular to the line $x=2-4 t, y=2 t, z=-1+t$.

Problem 16. Find the equation of the plane that passes through the points $P(1,0,1), Q(2,3,4)$ and $R(2,1,1)$.

Problem 17. Find an equation of the plane passing through the point $(-1,-3,2)$ that contains the line $x=-1-2 t, y=4 t, z=2+t$.

Problem 18. Consider the lines $\mathbf{r}_{1}(t)=\langle 2+t, 2 t, 5+t\rangle$ and $\mathbf{r}_{2}(s)=\langle s,-4+4 s, 3+s\rangle$.
a) Find the point of intersection of the lines
b) Find an equation of the plane that contains these lines.

Problem 19. Consider the planes $z=x+y$ and $2 x-5 y-z=1$.
a) Find the angle between the planes.
b) Find the line of intersection of the planes.

