Math 150 - Week-In-Review 13
Alexandra L. Foran

Problem Statements

1. Find the component form and magnitude of the vector \(\mathbf{v} \).

 Initial Point: \((2, 4)\) \hspace{1cm} **Terminal Point:** \((-34, -11)\)

2. Given the following vectors, find \(\mathbf{u} + 2 \mathbf{v} \) and \(\mathbf{u} - \mathbf{v} \).

 \[\begin{align*}
 \mathbf{v} & = \langle 3, 7 \rangle \\
 \mathbf{u} & = \langle 2, 4 \rangle
 \end{align*} \]

3. Find a unit vector \(\mathbf{u} \) in the direction of \(\mathbf{v} \), given that \(\mathbf{v} = \langle 3, 7 \rangle \).

4. Find the component form of \(\mathbf{v} = -\mathbf{u} + \mathbf{w} \), where \(\mathbf{u} = 2 \mathbf{i} - \mathbf{j} \), and \(\mathbf{w} = \mathbf{i} + 5 \mathbf{j} \).

5. Find the component form of \(\mathbf{v} \) given its magnitude and the angle it makes with the positive x-axis.
 \[\| \mathbf{v} \| = 3, \ \theta = 225^\circ \]

6. Find \(\mathbf{u} \cdot \mathbf{v} \) and \((\mathbf{u} \cdot \mathbf{v})\mathbf{v} \) for \(\mathbf{u} = \langle 2, 4 \rangle \) and \(\mathbf{v} = \langle -6, 2 \rangle \).

7. Find the angle between \(\mathbf{u} \) and \(\mathbf{v} \) for \(\mathbf{u} = \langle 2, 4 \rangle \) and \(\mathbf{v} = \langle -6, 2 \rangle \).

8. Find the projection of \(\mathbf{u} = \langle 2, 4 \rangle \) onto \(\mathbf{v} = \langle -6, 2 \rangle \). Then write \(\mathbf{u} \) as the sum of two orthogonal vectors, one of which is \(\text{proj}_\mathbf{v} \mathbf{u} \).

9. Compute the difference quotient for \(f(x) = \frac{x}{2x + 1} \).

10. Compute the difference quotient for \(g(x) = \sqrt{12 - 4x} \).

11. Solve using substitution: \[
 \begin{align*}
 x + 5y & = 47 \\
 7x - 8y & = -15
 \end{align*}
\]

12. Solve using elimination: \[
 \begin{align*}
 4x - 5y & = 8 \\
 -8x + 10y & = -16
 \end{align*}
\]

13. Solve using whichever method you choose: \[
 \begin{align*}
 3x - 9y & = 11 \\
 -4x + 12y & = 0
 \end{align*}
\]