Week in Review 2

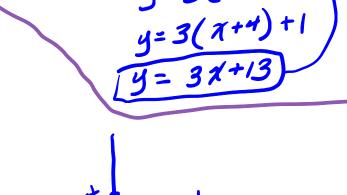
courtesy: Amy Austin (covering appendix J_3 , 1.5, 2.2)

1. Sketch the parametric curves described below. Indicate with an arrow the direction in which the curve is traced out as t increases. What is the cartesian equation of the curve?

a.) x = t - 4, y = 3t + 1

graph will be a line since degree of t is at most 1.

 $t=0 \left\{ \begin{array}{l} \chi=-4 \\ y=1 \end{array} \right.$


cartesian equation:

b.) $x = \sqrt{t}, y = 1 - t$

 $t=0 < \frac{x=0}{y=1} \rightarrow (0,1)$

 $t=1 < x=1 \rightarrow (1,0)$

cartesian equation:

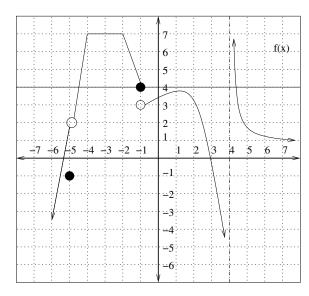
c.)
$$x = 2\sin\theta$$
, $y = 3\cos\theta$

d.)
$$\mathbf{r}(t) = \langle 2 + \sin t, 3 + \cos t \rangle, \ 0 \le t \le \pi$$

Vector equation of a line Illustration

2	Find a vector	equation (of the line	passing throu	igh the no	oint (1.3)	and parallel	to the vector	$r \langle -2.6 \rangle$

3. Find a vector equation of the line with slope $\frac{2}{3}$ and passing through the point (-2,2)


4.	Find	paran	netric e	quations	for the	e line pa	ssing th	rough th	e points	(8,3) and	d (-5,2)
5.	Find	a vect	or perp	oendicula	ar to th	e line 2	x + 5y =	= 8.			

6. Determine whether the following lines are parallel or perpendicular. If they are not parallel, find the point of intersection.

L1:
$$\mathbf{r}(\mathbf{t}) = (-4 + 2t)\mathbf{i} + (5 + t)\mathbf{j}$$

L2:
$$\mathbf{r}(\mathbf{t}) = (2+3t)\mathbf{i} + (4-6t)\mathbf{j}$$

7. Use the graph of f(x) below to compute the following limits, or explain why the limit does not exist.

- a) $\lim_{x \to -1^-} f(x)$
- b) $\lim_{x \to -1^+} f(x)$
- c) $\lim_{x \to -1} f(x)$
- d) $\lim_{x \to -5} f(x)$
- e) $\lim_{x \to 4^+} f(x)$
- $\text{f.})_{x \to -2} f(x)$

8. Find $\lim_{x\to -2} \frac{x-1}{x+2}$ or explain why it does not exist.

9. Find $\lim_{x\to 3} \frac{x-5}{x^2-9}$ or explain why it does not exist.

10. Find $\lim_{x\to 4} \frac{x-1}{(x-4)^2}$ or explain why it does not exist.