\[
\frac{dy}{dt} = y'(t) = \text{slope of the tangent line}
\]
Problem 1. Identify the differential equation that corresponds to the given direction field. Based on the direction field, determine the behavior of y as $t \to \infty$. If this behavior depends on the initial value of y at $t = 0$, describe the dependency.

a. $y' = 2y - 3$ b. $y' = 2 + y$ c. $y' = y - 3$ d. $y' = y(y + 3)$ e. $y' = y(y - 3)$ f. $y' = 1 + 2y$

$y = 2$ is the equilibrium solution: $y' = 0$ at $y = 2$

$y = -1$ $y' = -2 - y$ $y = -1 < 0$

$y = 3$ $y' = 2 - y$ $y = 3 - 3 < 0$

$y' = 0$ $y > 0$

$y = 0$ $y' = 0$

$y < 0$ $y' < 0$

$y' \to \infty$ if $y(0) > 2$

$y = 2$ if $y(0) = 2$

$y' \to -\infty$ if $y(0) < 2$

$y \to \infty$ for $y(0) > -2$

$y = -1$ for $y(0) = -2$

$y' \to -\infty$ for $y(0) < -2$

$y' \to 0$ if $y(0) < 0$

$y = 0$ if $y(0) = 0$

$y < 0$ if $y(0) > 0$

$y > 0$ if $y(0) < 0$
Problem 2. For small, slowly falling objects, the assumption that the drag force is proportional to the velocity is a good one. For larger, more rapidly falling objects, it is more accurate to assume that the drag force is proportional to the square of the velocity.

a. Write a differential equation for the velocity of a falling object of mass \(m \) if the magnitude of the drag force is proportional to the square of the velocity and its direction is opposite to that of the velocity.

b. Determine the limiting velocity after a long time.

c. If \(m = 10 \text{ kg} \), find the drag coefficient so that the limiting velocity is 49 m/s.

d. If \(v(0) = 0 \), find an expression for \(v(t) \) at any time.

e. Find the distance \(x(t) \) that the object falls in time \(t \).

f. Find the time \(T \) it takes the object to fall 300 m.

\[m \cdot \frac{dv}{dt} = mg - \gamma v^2 \]

\[\text{Newton's Law} \]

\[(\text{mass})(\text{acceleration}) = (\text{gravity}) - (\text{drag}) \]

\[m \cdot \frac{dv}{dt} = mg - \gamma v^2 \]

A. \[\text{drag} = \gamma v^2 \]

\[m \cdot \frac{dv}{dt} = mg - \gamma v^2 \]

B. Solving \(\frac{dv}{dt} = 0 \) \(\Rightarrow \) \(0 = mg - \gamma v^2 \) \(\Rightarrow \) \(v = \sqrt{\frac{mg}{\gamma}} \)

C. \(0 = 10 \cdot 9.8 - \gamma \cdot (49)^2 \) \(\Rightarrow \) \(\gamma = \frac{9.8}{49^2} = \frac{2}{49} \)
Problem 3. A radioactive material, such as the isotope thorium-234, disintegrates at a rate proportional to the amount currently present. If \(Q(t) \) is the amount present at time \(t \), then \(\frac{dQ}{dt} = -rQ \), where \(r > 0 \) is the decay rate.

a. If 100 mg of thorium-234 decays to 82.04 mg in 1 week, determine the decay rate \(r \).

b. Find an expression for the amount of thorium-234 present at any time \(t \).

c. Find the time required for the thorium-234 to decay to one-half its original amount.

\[
\begin{align*}
\text{a. } & \quad \frac{dQ}{dt} = -rQ \\
\text{divide by } Q & \quad \frac{dQ}{Q} = -r \, dt \\
\text{integrate} & \quad \int \frac{dQ}{Q} = \int -r \, dt \\
\Rightarrow & \quad \ln(Q) = -rt + C_0 \\
\text{b. } & \quad Q(t) = Ce^{-rt} \\
\text{c. } & \quad T \text{ be the time.}
\end{align*}
\]
\[Q(0) = Q_o = 100 \]
\[Q(T) = \frac{1}{2} Q_o = 50 \quad \Leftrightarrow \quad 100 e^{-rT} = 50 \]
\[\Leftrightarrow \quad e^{-rT} = \frac{1}{2} \]
\[\Leftrightarrow \quad -rT = \ln(\frac{1}{2}) \]
\[\Leftrightarrow \quad T = -\frac{\ln(\frac{1}{2})}{r} \quad r = -\frac{\ln(0.8204)}{7} \]
Problem 5. Determine the order of the given differential equation: also state whether the equation is linear or nonlinear.

1. \(\frac{d^2 y}{dx^2} + \frac{dy}{dx} + 2y = \sin x \)
 \(\text{order} = 2, \text{ linear} \)

2. \(\left(1 + \frac{x^2}{y^3} \right) \frac{dy}{dx} + \frac{dy}{dx} \right|_{y = e^t} \)
 \(\text{order} = 2, \text{ nonlinear} \)

3. \(\frac{d^2 y}{dx^2} + \frac{dy}{dx} + 2y = 1 \)
 \(\text{order} = 4, \text{ linear} \)

4. \(\frac{d^2 y}{dt^2} + \sin(t + y) - \sin t \)
 \(\text{order} = 2, \text{ nonlinear} \)

5. \(2y_{xyp} + 4y_{xyp} - 4y_{xyp} = 0 \)
 \(\text{order} = 4, \text{ linear} \)

6. \(\frac{dy}{dx} + 2y = 2 \frac{d^2 y}{dx^2} \)
 \(\text{order} = 2, \text{ nonlinear} \)
Problem 6. Verify that each given function is a solution of the differential equation.

\[t^2 y'' + 5ty' + 3y = 0 \quad t > 0; \quad y_1(t) = t^2, \quad y_2(t) = t^{-2} \ln t \]

\[y_2 = t^2 \ln t \]

\[y_2' = (2t^{-3}) \ln t + (t^{-2}) \cdot \frac{1}{t} \]

\[= -2t^{-3} \ln t + t^{-3} \]

\[= t^{-3} (-2 \ln t + 1) \]

\[y_2'' = (-3t^{-4})(-2 \ln t + 1) + (t^{-3}) (-2 \cdot \frac{1}{t}) \]

\[= -3t^{-4} (-2 \ln t + 1) - 2t^{-4} \]

\[= t^{-4} (6 \ln t - 5) \]

Plug \(y_2, y_2', y_2'' \) in the equation: \(t^2 y'' + 5ty' + 4y = 0 \)

\[(t^2)(t^{-4})(6 \ln t - 5) + (5t)(t^{-3})(-2 \ln t + 1) + 4t^{-2} \ln t \]

\[= t^{-2}(6 \ln t - 5) + 5t^{-2}(-2 \ln t + 1) + 4t^{-2} \ln t \]

\[= 0 \Rightarrow y_2 \text{ is a solution}. \]

\(y_1: \text{skip}. \)
Problem 7. Determine the values of \(r \) for which the given differential equation has solutions of the form \(y = e^{rt} \).

\[
y'' + y' - 6y = 0
\]

\[
y = e^{rt} \Rightarrow y' = re^{rt}, \quad y'' = r^2e^{rt}
\]

Plugging in,

\[
(r^2e^{rt}) + (re^{rt}) - 6e^{rt} = 0
\]

\[
\Leftrightarrow (r^2 + r - 6)e^{rt} = 0
\]

\[
\Leftrightarrow r^2 + r - 6 = 0 \quad \text{ divide by } e^{rt} \quad \text{since } e^{rt} > 0 \text{ always.}
\]

\[
\Leftrightarrow (r+3)(r-2) = 0 \quad \Rightarrow \boxed{r = -3, 2} \quad \Rightarrow y = e^{3t}, e^{2t}
\]

Problem 8. Determine the values of \(r \) for which the given differential equation has solutions of the form \(y = t^r \) for \(t > 0 \).

\[
t^2y'' + 4ty' + 2y = 0.
\]

\[
y = t^r \]

\[
y' = rt^{r-1}
\]

\[
y'' = r(r-1)t^{r-2}
\]

\[
\Leftrightarrow t^2 \left(r(r-1) + 4r + 2r^2 \right) + 2t^r = 0
\]

\[
\Leftrightarrow r(r+1)r + 4rt + 2t^r = 0
\]

\[
\Leftrightarrow \boxed{(r^2 + 3r + 2)} t^r = 0
\]

\[
\Leftrightarrow r^2 + 3r + 2 = 0
\]

\[
\Rightarrow (r+2)(r+1) = 0
\]

\[
\Rightarrow \boxed{r = -2, -1} \quad \Rightarrow y = t^2, t^{-1}
\]
Problem 4. According to Newton's law of cooling, the temperature \(u(t) \) of an object satisfies the differential equation

\[
\frac{du}{dt} = -k(u - T),
\]

where \(T \) is the constant ambient temperature and \(k \) is a positive constant. Suppose that the initial temperature of the object is \(u(0) - u_0 \).

a. Find the temperature of the object at any time.

\[
\Rightarrow \frac{du}{u - T} = -k \, dt
\]

\[
\Rightarrow \int \frac{du}{u - T} = \int -k \, dt
\]

\[
\Rightarrow \ln |u - T| = -kt + C_0
\]

\[
\Rightarrow |u - T| = e^{-kt + C_0} = e^{-kt} \cdot C_1
\]

\[
\Rightarrow u - T = \pm C_1 e^{-kt} = C_2 e^{-kt}
\]

\[
\Rightarrow u = T + C_2 e^{-kt}
\]

General solution

\[
U(0) = u_0:
\]

\[
U_0 = T + C_2 \cdot e^{-k0}
\]

\[
\Rightarrow U_0 = T + C_2
\]

\[
\Rightarrow C_2 = U_0 - T
\]

Particular solution

\[
U(t) = T + (u_0 - T)e^{-kt}
\]
6. \(U(t) = \frac{1}{2} T + \frac{1}{2} U_0 \):

\[
\left(\frac{1}{2} T + \frac{1}{2} U_0 \right) = T + (U_0 - T) e^{-kT}
\]

\[\iff \frac{1}{2} U_0 - \frac{1}{2} T = (U_0 - T) e^{-kT}\]

\[\iff \frac{1}{2} (U_0 - T) = (U_0 - T) e^{-kT}\]

\[\iff \frac{1}{2} = e^{-kT}\]

\[\iff \ln\left(\frac{1}{2}\right) = -kT\]

\[\iff k = -\frac{\ln\left(\frac{1}{2}\right)}{T} = \frac{\ln(2)}{T}\]