1. Find the general solution of the equation/solve the initial value problem
 (a) \(y'' + 6y' + 9y = t \cos(2t) \)

 (b) \(4y'' + y' = 4t^3 + 48t^2 + 1 \)
2. Find the form of a particular solution for each of the following nonhomogeneous equations.

(a) \(y'' + 2y' + 2y = e^{-t} \sin t + e^{-t} \cos 2t \)

(b) \(y'' - 2y' + y = te^t + t^2 e^{-t} + e^t \cos t + t^2 \)
3. Find the general solution of the equation $y'' + 6y' + 9y = \frac{e^{-3x}}{1 + 2x}$.
4. A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting the spring a distance of 1 in, then set in motion with a downward velocity of 2 ft/s, and if there is no damping, find the position \(u \) of the mass at any time \(t \). Determine the frequency, period, amplitude and phase angle of the motion.
5. A spring is stretched 10 cm by a force of 3 N. A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass 5 m/s. If the mass is pulled down 5 cm below its equilibrium position and given an initial velocity of 10 cm/s, determine its position u at any time. Find the quasifrequency of the motion.
6. A spring is stretched 6 in by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant of 0.25 lb·s/ft and is acted by an external force of $4\cos2t$ lb.

(a) Find the steady-state response of this system.

(b) If the given mass is replaced by a mass m, determine the value of m for which the amplitude of the steady-state response is maximum.

(c) If the mass is the same as in the problem, determine the value ω of the frequency of the external force $4\cos\omega t$ lb at which “practical resonance” occurs, i.e., the amplitude of the steady-state response is maximized.