PROBLEM STATEMENTS

1. Use the function value to find the indicated trigonometric value in the specified quadrant.

 Function Value: sec θ = \(-\frac{61}{11}\)
 Quadrant: III
 Trigonometric Function: tan θ

2. Find the reference angle for:
 a) \(\theta = 330^\circ\)
 b) \(\theta = \frac{7\pi}{4}\)
 c) \(\theta = \frac{13\pi}{9}\)
 d) \(\theta = -255^\circ\).
 e) \(\theta = 4.1\) radians
3. Use the reference angle to find the indicated trigonometric value for the specified angles.

(a) \(\sin \left(\frac{7\pi}{6} \right) = \)

(b) \(\cos \left(\frac{11\pi}{4} \right) = \)

(c) \(\tan \left(-\frac{2\pi}{3} \right) = \)

4. Given \(y = 3 \sin(4x + \pi) \), describe the period, amplitude, and phase shift of the graph. Then graph the function.

 Period:

 Amplitude:

 Phase Shift:

 Period Endpoints

 Start:

 End:

5. Write an equation for a function with the given characteristics. A sine curve with a period of \(\pi \), an amplitude of 6, a right phase shift of \(3\pi \).
6. Given \(y = \frac{1}{2} \cos\left(\frac{\pi}{2}x - 3\pi\right) \), describe the period, amplitude, and phase shift of the graph. Then graph the function.

 Period:

 Amplitude:

 Phase Shift:

 Period Endpoints

 Start:

 End:

7. Write an equation for a function with the given characteristics. A cosine curve with a period of 3, an amplitude of \(\frac{1}{4} \), and a vertical translation down 7 units.

8. Given the graph, write the equation of the sine function which matches the graph.
9. Given the graph, write the equation of the cosine function which matches the graph.

![Graph of a cosine function]

10. Graph \(y = 3 \tan (3x) - 2 \).

 Period:
 Amplitude:
 Phase Shift:
 Period Endpoints Start:
 End: