Problem Statements

1. Convert 75° to radians.

2. A circular sector created by a central angle of $\frac{3}{5}$ radians has an area of 1080 ft^2, determine the radius of the circle.

3. The planet Neptune has an orbit that is nearly circular. It orbits the Sun at a distance of 4497 million kilometers and completes one revolution every 165 years. How long is a full path of Neptune around the Sun? Then find the linear velocity of Neptune as it orbits the Sun.
4. Evaluate the six trigonometric functions for the following angles:

a) \(\sin \frac{4\pi}{3} \)
 a) \(\sin 315^\circ \)

b) \(\cos \frac{4\pi}{3} \)
 b) \(\cos 315^\circ \)

c) \(\tan \frac{4\pi}{3} \)
 c) \(\tan 315^\circ \)

d) \(\cot \frac{4\pi}{3} \)
 d) \(\cot 315^\circ \)

e) \(\sec \frac{4\pi}{3} \)
 e) \(\sec 315^\circ \)

f) \(\csc \frac{4\pi}{3} \)
 f) \(\csc 315^\circ \)
5. Find the exact value of the six trigonometric functions, given the following:

hypotenuse = 29, **side opposite the angle** = 21

6. Given \(\sin \theta = \frac{4}{7} \) and \(\theta \) in Q1, use the trigonometric identities to find the exact value of each:

a. \(\cos(\theta) = \)

b. \(\cot(\theta) = \)

c. \(\csc(\theta) = \)

d. \(\tan(90^\circ - \theta) = \)

7. From a point on the ground 47 feet from the foot of a tree, the angle of elevation of the top of the tree is 30°. Find the height of the tree.
8. Find the exact value of \(x \) and \(y \).

\[
\begin{align*}
45^\circ & \quad 70 \\
\text{y} & \\
\text{x}
\end{align*}
\]

9. Let \((-24, 7)\) be a point on the terminal side of \(\theta \). Find the sine, cosine, and tangent of \(\theta \).

10. Let \((3, -8)\) be a point on the terminal side of \(\theta \). Find the sine, cosine, and tangent of \(\theta \).

11. Given \(\sin(\theta) = -\frac{5}{7} \) and \(\tan(\theta) > 0 \), find \(\tan(\theta) \) and \(\sec(\theta) \).