Section 2.3: Systems of Two Equations in Two Unknowns

1. State the type of linear system given without graphing or actually computing the solution. Then, state the number of solutions.

\[\begin{align*}
L_1: & \quad 4x + 5y = 12 \\
L_2: & \quad 2x = -\frac{3}{2}y + 6
\end{align*} \]

\[\begin{align*}
5y &= -4x + 12 \\
y &= -\frac{4}{5}x + \frac{12}{5}
\end{align*} \]

\[m_1 = -\frac{4}{5}, \quad b_1 = \frac{12}{5} \]

\[\begin{align*}
-\frac{5}{2}y &= 2x - 6 \\
y &= -\frac{4}{5}x + \frac{12}{5}
\end{align*} \]

\[m_2 = -\frac{4}{5}, \quad b_2 = \frac{12}{5} \]

As \(m_1 = m_2 \) AND \(b_1 = b_2 \), the system is dependent and has infinitely many solutions.

2. Find the value of \(k \) so that the following system of equations has no solution.

\[\begin{align*}
L_1: & \quad y = \frac{5}{4}x + 1 \\
L_2: & \quad 10x - ky = -6
\end{align*} \]

\[\begin{align*}
L_1: & \quad y = \frac{5}{4}x + 1 \\
m_1 &= \frac{5}{4} \quad \text{but} \quad b_1 \neq b_2
\end{align*} \]

\[\begin{align*}
L_2: & \quad 10x - ky = -6 \\
-ky &= -10x - 6 \\
y &= \frac{10}{k}x + \frac{6}{k}
\end{align*} \]

\[m_2 = \frac{10}{k}, \quad b_2 = \frac{6}{k} \]

\[m_1 = m_2 \]

\[\frac{5}{4} = \frac{10}{k} \]

\[5k = 40 \]

\[k = 8 \]

Check

\[b_1 \neq b_2, \text{ when } k=8 \]

\[\frac{5}{4} \neq \frac{6}{8} \]

\[1 \neq \frac{6}{8} \quad \text{True} \]

So when \(k=8 \) the system has no solution.
3. Solve each system using the stated method. Write any solutions as ordered pairs with exact values. For parametric solutions use p as your parameter.

(a) \[
\begin{align*}
3x + 2y &= 5 \\
y &= -\frac{3}{2}x + 2
\end{align*}
\] using the graphical method.

\[
\begin{align*}
L_1: & \quad 3x + 2y = 5 \\
x\text{-int: } & \quad (\frac{5}{3}, 0) \\
y\text{-int: } & \quad (0, \frac{5}{2}) \\
L_2: & \quad y = -\frac{3}{2}x + 2 \\
x\text{-int: } & \quad (\frac{4}{3}, 0) \\
y\text{-int: } & \quad (0, 2)
\end{align*}
\]

No Solution

(b) \[
\begin{align*}
3x - 2y &= -3 \\
5x - y &= 2
\end{align*}
\] using the substitution method.

\[
\begin{align*}
3x - 2y &= -3 \\
5x - y &= 2 \\
\Rightarrow \quad & y = 5x - 2 \\
3x - 2(5x - 2) &= -3 \\
3x - 10x + 4 &= -3 \\
-7x &= -7 \\
x &= 1 \\
y &= 5(1) - 2 \\
y &= 3
\end{align*}
\]

\[(x, y) = (1, 3)\]

(c) \[
\begin{align*}
3x - 2y &= -4 \\
4y &= 6x + 8
\end{align*}
\] using the addition method.

\[
\begin{align*}
(3x - 2y &= -4) \cdot 2 \Rightarrow & 6x - 4y = -8 \\
4y &= 6x + 8 \\
\Rightarrow & -6x + 4y = 8
\end{align*}
\]

\[
0x + 0y = 0
\]

0 = 0 True \Rightarrow Infinitely many Solutions

Let \(y = p\), where \(p\) is any real number.

then

\[
\begin{align*}
3x - 2y &= -4 \\
3x &= 2p - 4 \\
x &= \frac{2}{3}p - \frac{4}{3}
\end{align*}
\]

\[
\begin{align*}
\text{So } (x, y) &= \left(\frac{2}{3}p - \frac{4}{3}, p\right)
\end{align*}
\]
4. The production cost for a record company are $18 per record and if they produce 60 records, then the total costs are $1652. The company sells each record for $40. Determine and interpret the break-even point for the record company on the production and sale of these records.

\[
\text{Cost: } C(x) = 18x + F \\
\text{and } (60, 1652) \\
1652 = 18(60) + F \\
572 = F \\
\text{Cost: } C(x) = 18x + 572 \\
\text{Revenue: } R(x) = 40x \\
50 \quad R(x) = C(x) \\
40x = 18x + 572 \\
22x = 572 \\
x = 26 \\
R(26) = 40(26) = 1040 \\
The company will cover their all their costs of $1040 when 26 records are sold. The company will earn a profit gain when 27 or more records are produced and sold. \\
\text{Break-even point: } (x, R) = (26, 1040)
\]

5. Consumers will buy 10,000 items at a price of $120 per item. If the price goes up by $30 per item, then they will only buy 7600 items. Producers will not market this item below $40, but if the price per item increases by $15, the producers will provide 6000 items to the market. Determine and interpret the market equilibrium point for these items.

\[
\text{Demand: } (10000, 120) \\
(7600, 120 + 30) \\
D(x) = \frac{150 - 120}{7600 - 10000} = \frac{30}{-2400} = -\frac{1}{80} \\
D(x) = -\frac{1}{80}(x - 10000) + 120 = \frac{1}{80}x + 245 \\
\text{Supply: } (0, 40) \\
(6000, 40 + 25) \\
S(x) = \frac{65 - 40}{6000 - 0} = \frac{25}{4000} = \frac{1}{240} \\
S(x) = \frac{1}{240}(x - 0) + 40 = \frac{1}{240}x + 40 \\
\text{Equilibrium } P+: \quad D(x) = S(x) \\
\frac{-\frac{1}{80}x + 245}{= \frac{1}{240}x + 40} \\
205 = \frac{1}{60}x \\
12300 = x \\
\text{The equilibrium point is } (12300, 91.25). \\
\text{If producers make 12,300 items and sell them at } $91.25 \text{ each,} \\
\text{consumers will purchase all 12,300 items.}
1. Set up, but do not solve, a system of linear equations which could be used to solve the problem.

You have $50,000 to invest in Fund A and Fund B. Fund A pays 7.4% and Fund B pays 9.8%. How much do you invest in each to get a return of $4,072 per year?

\[
\begin{align*}
\alpha & : = \text{the amount, in dollars, invested in Fund A} \\
\beta & : = \text{the amount, in dollars, invested in Fund B} \\
\alpha + \beta & = 50000 \quad \text{(Total invested)} \\
0.074\alpha + 0.098\beta & = 4072 \quad \text{(Returns)}
\end{align*}
\]

2. Write the corresponding augmented matrix for the systems of linear equations.

\[
\begin{bmatrix}
4x + 2y + 3z = 72 \\
2y - 3z = 12 \\
-x + 9 = 5y + z \Rightarrow +x + 5y + z = 9
\end{bmatrix}
\]

3. Write a system of linear equations which corresponds to the augmented matrix. Assume the variables are \(x \) and \(y \) or \(x \), \(y \), and \(z \).

\[
\begin{bmatrix}
-2 & -6 & -10 & -12 \\
0 & 1 & 2 & 3 \\
2 & 1 & 2 & -5
\end{bmatrix}
\]

\[
\begin{align*}
-2x - 6y - 10z & = -12 \\
y + 2z & = 3 \\
2x + y + 2z & = -5
\end{align*}
\]
4. Perform the indicated row operation and write the resulting matrix.
\[
\begin{bmatrix}
1 & -4 & 1 \\
5 & 2 & 19
\end{bmatrix}
-5R_1 + R_2 \rightarrow R_2
\]
\[
\begin{array}{c}
-5R_1 = -5 & 20 & -5 \\
+ R_2 = 5 & 2 & 19 \\
\hline
0 & 22 & 14
\end{array}
\]
\[
\begin{bmatrix}
1 & -4 & 1 \\
0 & 22 & 14
\end{bmatrix}
\]

5. State if the matrix is in reduced row-echelon form. If the matrix is not in reduced row-echelon form, state which of the four conditions is first violated, as stated in the definition.

(a) \[
\begin{bmatrix}
1 & 3 & -2 \\
0 & 1 & 0
\end{bmatrix}
\]
Not in rref
The column with a leading 1 should have 0's as all other entries in the column.

(b) \[
\begin{bmatrix}
1 & 2 & 0 & 3 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
In rref
6. Solve each system of linear equations using matrices. Write your answer as an ordered pair or ordered triple, as appropriate. For parametric solutions use \(t \) as your parameter.

(a) \[
\begin{align*}
3x + 5y &= -2 \\
-9x - 15y &= 6
\end{align*}
\]

\[
\begin{bmatrix}
3 & 5 & | & -2 \\
-9 & -15 & | & 6
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 5/3 & | & -2/3 \\
0 & 0 & | & 0
\end{bmatrix} \Rightarrow \begin{cases}
x + \frac{5}{3}y = \frac{-2}{3} \\
0 = 0
\end{cases}
\]

Let \(y = t \), where \(t \) is any real number.

Then \(x + \frac{5}{3}y = \frac{-2}{3} \)

\(x + \frac{5}{3}t = \frac{-2}{3} \)

\(x = \frac{-5}{3}t - \frac{2}{3} \)

Solution: \((x, y) = \left(\frac{-5}{3}t - \frac{2}{3}, t \right) \)

(b) \[
\begin{align*}
x + 4z &= 0 \\
x + y &= -2z + 1 \\
6z - 3x &= -3y + 15
\end{align*}
\]

\[
\begin{bmatrix}
1 & 0 & 4 & | & 0 \\
1 & 1 & 2 & | & 1 \\
-3 & 3 & 6 & | & 15
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & 0 & | & -2 \\
0 & 1 & 0 & | & 2 \\
0 & 0 & 1 & | & \frac{1}{2}
\end{bmatrix}
\]

Solution: \((x, y, z) = (-2, 2, \frac{1}{2}) \)