SECTION 3.4: SIMPLEX METHOD

- 1. Determine if each of the following linear programming problems is a standard maximization problem, if it is then write the initial tableau for the linear programming problem.
 - (a) Maximize: P = 9x + 7y + 11z

Subject to: $-2x + 4y - 6z \le 1200$

x > 0, y > 0, z > 0

P = 9x + 7y + 11z $-2x + 4y - 6z \le 1200$ $8x + y + 3z \le 800$ $5x - 10y \ge -10$ $-5x + 10y \le 10$ 3Maximization $ax, t... \le V, V \ge 0$ $10x + 10y \le 10x = 0$ 3Maximization $3x + 10y \le 10x = 0$ $3x + 10y \le 10x = 0$

A standard maximization problem

(b) Maximize: P = 2x + 8y

Subject to: $3x - 10 \le 2y$ $3x - 2y \le 10$ $4x - 6y \ge 8$ $x \ge 0, y \ge 0$

3 Non-negativity

Not a standard maximization problem

2. State the pivot column, pivot row, and pivot element for the given simplex tableaus below. Pivot is 6 in R2, C1

 $y s_1 s_2 P constant$

(b) $\begin{bmatrix} 1 & 0 & \frac{2}{5} & 0 & 0 & -\frac{5}{2} & 0 & 22 \\ 0 & 6 & \boxed{3} & 0 & 1 & 2 & 0 & 0 \\ 0 & \frac{3}{4} & 7 & 1 & 0 & 0 & 0 & 12 \\ \hline 0 & =2 & =9 & 0 & 0 & -4 & 1 & 340 \end{bmatrix}$

Pivot is 3 in R2, C3

3. State the the value of each variable and whether the variable is basic or non-basic for the given simplex tableaus below. Then determine if the given simplex tableau is a final tableau.

Basic Non-Basics

$$x = 50$$
 $y = 0$
 $5 = 18$ $5 = 0$
 $P = 275$

Final Tableau

Basic
$$x = 22$$
 $z = 12$ $z = 0$ $z = 0$ $z = 0$

Not the Final Tableau

4. Solve the linear programming problem, using the Simplex Method, if possible.

Maximize:
$$P = 9x + 7y + 11z$$

Subject to: $-2x + 4y - 6z \le 1200$
 $8x + y + 3z \le 800$
 $5x - 10y \ge -10$
 $x \ge 0, y \ge 0, z \ge 0$

$$x = 0$$
 $y = 1$
 $z = 799$
 $y = 1$
 $z = 799$
 $y = 1$
 $z = 799$

Solution:
$$(x,y,z) = (0,1,\frac{799}{3})$$

 $P = \frac{8810}{3}$

5. Use the Simplex Method, if possible, to solve the lienar programming problem.

You have \$12,000 to invest, some in Stock A and some in Stock B. You have decided that the money invested in Stock A must be at least twice as much as that in Stock B. However, the money invested in Stock A must not be greater than \$9,000. If Stock A earn 3% annual interest, and Stock B earn 4% annual interest, how much money should you invest in each to maximize your annual interest?

a:= the amount, in dollars, invested in Stock A b:= the amount, in dollars, invested in Stock B I:= the interest earned, in dollars

Maximize: T = 0.03a + 0.04bSubject to: $a + b \le 12000$ $a \ge 2b$ $a \le 9000$ $a \le 9000$ $a \ge 0.03a = 0.04b + T = 0$

The maximum interest you can earn is \$400 when you invest \$8000 in Stock & and \$400 in Stock B.

SECTION 4.1: MATHEMATICAL EXPERIMENTS

- 1. State the sample space for each experiment:
 - (a) Selecting a letter at random from the word "skate" and noting the letter.

(b) A standard 30-sided die is rolled and it is noted whether the number is a multiple of 4 or is not a multiple of 4.

(c) A card is drawn from a standard deck of 52-cards, noting the color, and then a standard four-sided die is rolled, noting the number facing uppermost.

$$S = \{ (B, 1), (B, 2), (B, 3), (B, 4) \}$$

$$(R, 1), (R, 2), (P, 3), (P, 4) \}$$

- 2. Consider the experiment of selecting a letter at random from the word "skate" and noting the letter.
 - (a) State the certain event for the experiment.

(b) Given an example of an impossible event for the experiment.

(c) Write the outcomes in the event, J := the event "a consonant is drawn."

- 3. A card is drawn from a standard deck of 52-cards, noting the color, and then a standard four-sided die is rolled, noting the number facing uppermost.
 - (a) State all the simple events for the experiment.

$$\{(B,1)\}\$$
 $\{(R,1)\}\$ $\{(R,2)\}\$ $\{(R,2)\}\$ $\{(R,2)\}\$ $\{(R,2)\}\$ $\{(R,3)\}\$ $\{(R,4)\}\$ State the total number of possible

(b) State the total number of possible events.

(c) Write the outcomes in the event, M := the event "a black or a number less an 3 is rolled."

4. An experiment consists of rolling a five-sided, noting the number showing uppermost and then spinning a spinner with five equal regions (red, blue, purple, maroon, and green), noting the color.

Let

- V := the event "a number greater than 3 is rolled"
- W :=the event "an even is rolled"
- X := the event "the spinner lands on blue"
- $\bullet Y :=$ the event "the spinner lands on a color other than green"
- Z := the event "the spinner lands on purple or maroon."
- (a) Write the symbolic notation for the event, H, that "a number less than or equal to 3 is rolled or the spinner lands on a color other than green, but not blue."

(b) Describe the event $Z \cup Y \cup C$

The event "the spinner lands on purple or maroon or a color other than green or an odd is rolled on the die "

(c) Are event V and event W mutually exclusive? Explain why or why not.

$$V = \{(4,r),(4,b),(4,p),(4,m),(4,q),(5,r),(5,b),(5,p),(5,m),(5,g),(5,m),(5,g),(4,r),(4,b),(4,p),(4,m),(4,q)\}$$

$$W = \{(2,r),(2,b),(2,p),(2,m),(2,q),(4,r),(4,b),(4,p),(4,m),(4,q)\}$$

No, because they have overlap.

$$V \cap W = \{(4,r), (4,b), (4,p), (4,m), (4,g)\}$$

5. Let A and B be two events of the sample space, S.

Use a two-circle Venn diagram to illustrate which region(s) contain the outcomes of the resulting events.

a.
$$B^C \cap A$$

$$A = \{w, x\}$$

$$B = \{x, y\} \Rightarrow B^{c} = \{w, z\}$$

$$B^{c} \cap A = \{w, z\} \cap \{w, x\}$$

$$A = \{w, z\} \cap \{w, x\}$$

$$A = \{w, z\} \cap \{w, x\}$$

$$A = \{w\}$$

b.
$$(A \cup B) \cap A^C$$

$$A = \{ w, x \} \Rightarrow A^c = \{ y, z \}$$

$$B = \{ x, y \}$$

$$(AUB) = \{ w, x \} \cup \{ x, y \}$$

$$combine$$

$$AUB = \{ w, x, y \}$$

$$(AUB) \cap A^c = \{ w, x, y \} \cap \{ y, z \}$$

$$in both$$

$$(AUB) \cap A^c = \{ y \}$$