(1) Find the volume of the solid obtained by rotating the region bounded by $y = e^x$, $y = x + 1$, and $x = 2$ about the x-axis.
(2) Find the volume of the solid obtained by rotating the region bounded by \(y = \ln x \), \(x = e \), and \(y = 0 \) about the \(y \)-axis.
(3) Find the volume of the solid obtained by rotating the region bounded by $y = \frac{1}{x}$, $y = \sqrt{x}$, and $x = 4$ about the line $y = 3$.
(4) Find the volume of the solid obtained by rotating the region bounded by $x = y^2 + 3$ and $x = 7$ about the line $x = 7$.

(5) Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, $y = 4x$, and $x \geq 0$ about the line $x = -3$.
(6) Find the volume of the solid obtained by rotating the region bounded by $y = \sqrt{5 - x}$, $x = 1$, and $y = 0$ about the line $y = 7$.
(7) Find the volume of the solid whose base is bounded by the curves $y = x^2 - 4$ and the x-axis. Cross-sections perpendicular to the y-axis are rectangles with the height double the length of the base.
(8) Find the volume of a solid whose base is bounded by the curves \(y = e^x, \ x = 0, \ y = 0, \) and \(x = 1, \) and cross-sections perpendicular to the \(x \)-axis are equilateral triangles.
(9) Find the volume of a solid whose base is bounded by the curves \(y = \sqrt{x + 5}, \ x = 4, \) and \(y = 0, \) and the cross-sections perpendicular to the \(y \)-axis are semicircles.
(10) Find the volume of a solid whose base is a circle of radius 5 and cross-sections are squares.
(11) Find the volume of a solid whose base is a triangular region with vertices $(0, 6)$, $(-3, 0)$, and $(3, 0)$ and cross-sections perpendicular to the y-axis are isosceles triangles with height equal to half the base.