

Test Review

Problem 1. Sketch the curve $x = 1 - t^2$, $y = 2t - t^2$ with $-1 \le t \le 2$.

Problem 2. Sketch $x = 2t - 1, y = \frac{1}{2}t + 1.$

Problem 3. Sketch $x = \sin t$, $y = 1 - \cos t$, $0 \le t \le 2\pi$.

Problem 4. Sketch $x = \sin \frac{1}{2}t$ $y = \cos \frac{1}{2}t, -\pi \le t \le \pi$.

Problem 5. Sketch $x = e^t$, $y = e^{-2t}$.

Problem 6. Sketch $x = t^2$, $y = \ln t$.

Problem 7. Find parametric equations for $x^2/a^2 + y^2/b^2 = 1$.

Problem 8. Find the equation of the tangent line to the curve $x = t^3 + 1$, $y = t^4 + t$ at (0,2).

Problem 9. Find the equation of the tangent line to the curve $x = t \cos t$, $y = t \sin t$ at $(\pi, 0)$.

Problem 10. Find the equation of the tangent line to the curve $x = t^3 + 1$, $y = t^4 + t$ at (0, 2).

Problem 11. Let $x = t^2 + 1$ and $y = t^2 + t$. Find $\frac{dy}{dx}$ and $\frac{dy^2}{dx^2}$. For what values of t is the curve CD?

Problem 12. Let $x = t - \ln t$ and $y = t + \ln t$. Find $\frac{dy}{dx}$ and $\frac{dy^2}{dx^2}$. For what values of t is the curve CD?

Problem 13. Show that $x = \cos t$, $y = \sin t \cos t$ has two tangents at (0,0). Find their equations.

Problem 14. Find the length of $x = t + e^{-t}$ and $y = t - e^{-t}$ for $0 \le t \le 2$.

Problem 15. Find the lentsh of $x = t - 2\sin t$, $y = 1 - 2\cos t$, $0 \le t \le 4\pi$.

Problem 16. Find the lentsh of $x = e^t \cos t$, $y = e^t \sin t$, $0 \le t \le \pi$.