Problem 1. Identify the differential equation that corresponds to the given direction field. Based on the direction field, determine the behavior of \(y \) as \(t \to \infty \). If this behavior depends on the initial value of \(y \) at \(t = 0 \), describe the dependency.

- a. \(y' = y - 2 \)
- b. \(y' = y - 3 \)
- c. \(y' = 2 + y \)
- d. \(y' = y - 2 \)
- e. \(y' = y(y - 3) \)
- f. \(y' = 1 + 2y \)
- g. \(y' = y(y - 3) \)
- h. \(y' = y(y - 3) \)

- i. \(y' = 1 - 2y \), \(y' = 2 - 2y \)

\(y > 2 \): \(y' < 0 \)

\(y = 2 \): \(y' = 0 \)

\(y < 2 \): \(y' > 0 \)

9. \(y > 2 \) as \(t \to \infty \)

- \(y > 2 \) if \(y(0) > 2 \)
- \(y \to -\infty \) if \(y(0) < 2 \)

- \(y < 0 \): \(y' < 0 \)
- \(y = 0 \): \(y' > 0 \)
- \(y > 0 \): \(y' < 0 \)

- \(0 < y < 2 \): \(y' > 0 \)
- \(y < 2 \): \(y' < 0 \)
- \(y = 2 \): \(y' = 0 \)

- \(y > 3 \): \(y \to y = 3 \)
- \(y > 3 \): \(y \to \infty \)

- \(0 < y < 3 \): \(y \to y = 3 \)
- \(0 < y < 3 \): \(y \to 0 \)

- \(y < 0 \): \(y \to -\infty \)
- \(y < 0 \): \(y \to 0 \)
Problem 2. For small, slowly falling objects, the assumption that the drag force is proportional to the velocity is a good one. For larger, more rapidly falling objects, it is more accurate to assume that the drag force is proportional to the square of the velocity.

\[F = \gamma \cdot v^2 \]

a. Write a differential equation for the velocity of a falling object of mass \(m \) if the magnitude of the drag force is proportional to the square of the velocity and its direction is opposite to that of the velocity.

\[m \cdot \frac{dv}{dt} = mg - \gamma \cdot v^2 \]

b. Determine the limiting velocity after a long time.

c. If \(m = 10 \, \text{kg} \), find the drag coefficient so that the limiting velocity is \(40 \, \text{m/s} \).

\[0 = mg - \gamma \cdot v^2 \quad \Leftrightarrow \quad v = \sqrt{\frac{mg}{\gamma}} \]

\[0 = 10 \cdot 9.8 - \gamma \cdot (49)^2 \]

\[\gamma = \frac{9.8}{(49)^2} = \frac{2}{49} \]
Problem 3. According to Newton's law of cooling, the temperature \(u(t) \) of an object satisfies the differential equation

\[
\frac{du}{dt} = -k(u-T),
\]

where \(T \) is the constant ambient temperature and \(k \) is a positive constant. Suppose that the initial temperature of the object is \(u(0) = u_0 \).

a. Find the temperature of the object at any time.

\[
(0) \quad \frac{du}{u-T} = -k \, dt \quad \Rightarrow \quad \ln |u-T| = -kt + C_0
\]

\[
\Leftrightarrow |u-T| = e^{-kt+C_0} = e^{-kt} \cdot e^{C_0} = c_1 e^{-kt}
\]

\[
\Leftrightarrow u-T = \pm c_1 e^{-kt}
\]

\[
\Leftrightarrow u-T = C_2 e^{-kt}
\]

\[
\text{Only one of } +C_1 \text{ or } -C_1 \text{ will occur.}
\]

\[
\Rightarrow u = T + C_2 e^{-kt}
\]

b. Let \(\tau \) be the time at which the initial temperature difference \(u_0 - T \) has been reduced by half. Find the relation between \(k \) and \(\tau \).

\[
\Rightarrow u_0 = T + C_2 e^0 = T + C_2
\]

\[
\Rightarrow C_2 = u_0 - T
\]

\[
\Rightarrow u = T + (u_0 - T) e^{-kt}
\]

\[
(\text{b}) \quad u(T) - T = \frac{1}{2} (u_0 - T)
\]

\[
\Rightarrow u(T) = T + \frac{1}{2} (u_0 - T) = \frac{1}{2} T + \frac{1}{2} u_0
\]

\[
\Rightarrow C_2 = \frac{1}{2} u_0
\]

\[
\Rightarrow e^{-k\tau} = \frac{1}{2} \left(u_0 - T \right)
\]

\[
\Leftrightarrow -k\tau = \ln(\frac{1}{2})
\]

\[
\tau = \frac{-\ln(\frac{1}{2})}{k}
\]
Problem 4. Determine the order of the given differential equation; also state whether the equation is linear or nonlinear.

1. \(\frac{d^2 y}{dt^2} + \frac{d y}{dt} + 2y - \sin t. \)
 \(\begin{align*}
 \text{order: } & 2, \quad \text{linear} \\
 \text{order: } & 2, \quad \text{nonlinear}
 \end{align*} \)

2. \((1 + y^2) \frac{d^2 y}{dt^2} - \frac{d y}{dt} + y = e^t. \)
 \(\begin{align*}
 \text{order: } & 2, \quad \text{nonlinear}
 \end{align*} \)

3. \(\frac{d^4 y}{dt^4} + \frac{d^3 y}{dt^3} + \frac{d^2 y}{dt^2} + \frac{dy}{dt} + y = 1. \)
 \(\begin{align*}
 \text{order: } & 4, \quad \text{linear}
 \end{align*} \)

4. \(\frac{d^2 y}{dt^2} + \sin(t + y) = \sin t. \)
 \(\begin{align*}
 \text{order: } & 2, \quad \text{nonlinear}
 \end{align*} \)

5. \(2y_{xxxx} + 4y_{xxx} + 6y_{xx} = 0. \)
 \(\begin{align*}
 \text{order: } & 4, \quad \text{linear}
 \end{align*} \)

6. \(\frac{d^2 u}{dx^2} + u = 2f_{xx} \)
 \(\begin{align*}
 \text{order: } & 2, \quad \text{nonlinear}
 \end{align*} \)

- \(y(t) \)
 \(y^2 = 1 \rightarrow \text{nonlinear} \)
- \(u(y) \)
 \(y^2 u = 1 \rightarrow \text{linear} \)
- \(\sin(\theta) y(\theta) + y(\theta) = 0 \)
 \(\sin(\theta) y(\theta) + y(\theta) = 0 \)
Problem 5. Verify that each given function is a solution of the differential equation.

\[t^2y'' + 5ty' - 4y = 0, \quad t > 0; \quad y_1(t) = t^{-2}, \quad y_2(t) = t^{-2} \ln t. \]

\[y_2 = t^{-2} \ln t \]
\[y_2' = -2t^{-3} \ln t + t^{-2} \cdot t^{-1} \]
\[= t^{-3} (\ln t - 1) \]
\[y_2'' = -3 \cdot t^{-4} (\ln t + 1) + t^{-3} (\ln t - 1) \]
\[= t^{-4} (6 \ln t - 1) \]

\[t^2 \left(t^{-4} (6 \ln t - 1) \right) + 5t \left(t^{-3} (\ln t - 1) \right) + 4t^{-2} \ln t \]
\[= t^2 (6 \ln t - 1) + 5t (\ln t - 1) + 4t^{-2} \ln t \]
\[= 0 \]
\[\Rightarrow y_2 \text{ is a solution} \]
Problem 6. Determine the values of r for which the given differential equation has solutions of the form $y = e^{rt}$.

\[y'' + 3y' + 2y = 0. \]

Plugging $y = e^{rt}$,

\[(r^2e^{rt}) + 3(re^{rt}) + 2(e^{rt}) = 0 \]

\[\iff (r^2 + 3r + 2)e^{rt} = 0 \]

\[\iff r^2 + 3r + 2 = 0 \]

\[\iff (r+2)(r+1) = 0 \iff r = -2, -1 \iff y = e^{-2t}, y = e^{-t} \]

Problem 7. Determine the values of r for which the given differential equation has solutions of the form $y = t^r$ for $t > 0$.

\[t^2y'' + 4ty' + 2y = 0. \]

\[
\begin{align*}
\begin{cases}
y = t^r \\
y' = rt^{r-1} \\
y'' = r(r-1)t^{r-2}
\end{cases}
\end{align*}
\]

\[\implies t^2(r(r-1)t^{r-2}) + 4t(rt^{r-1}) + 2t^r = 0 \]

\[\iff r(r-1)t^r + 4rt^{r+1} + 2t^r = 0 \]

\[\iff (r(r-1)+4r+2)t^r = 0 \]

\[\iff (r^2+3r+2) = 0 \]

\[\iff (r+2)(r+1) = 0 \]

\[r = -2, -1 \]

\[t > 0 \]

\[\text{So, divide by } t^r \]