Note #: Sections 2.4-2.5

Problem 1. Determine (without solving the problem) an interval in which the solution of the given initial value problem is certain to exist.

a.
\[(4 - t^2)y' + 2ty = 3t^2, \quad y(-3) = 1\]

b.
\[(t - 3)y' + (\ln t)y = 2t, \quad y(1) = 2\]
Problem 2. State where in the ty-plane the hypotheses of Theorem 2.4.2 (existence and uniqueness theorem for nonlinear equations) are satisfied.

a.
\[y' = (t^2 + y^2)^{3/2} \]

b.
\[y' = \frac{1 + t^2}{3y - y^2} \]
Problem 3. Solve the given initial value problem and determine how the interval in which the solution exists depends on the initial value y_0.

a.
\[y' + y^3 = 0, \quad y(0) = y_0 \]

b.
\[y' = \frac{t^2}{y(1 + t^3)}, \quad y(0) = y_0 \]
Problem 4.

\[\frac{dy}{dt} = (y - 4)(y - 2)(y + 1) \]

a. Determine the critical (equilibrium) points.
b. Sketch the graph of \(f(y) \) versus \(y \).
c. Draw the phase line.
d. Classify equilibrium points.
e. Sketch several graphs of solutions in the ty-plane.
Problem 5.

\[\frac{dy}{dt} = (y - 3)^2(y - 1)(y + 2)^2 \]

a. Determine the critical (equilibrium) points.
b. Draw the phase line.
c. Classify equilibrium points.
d. Sketch several graphs of solutions in the \(ty\)-plane.
Problem 6. Another equation that has been used to model population growth is the Gompertz equation

\[\frac{dy}{dt} = ry \ln \frac{K}{y}, \]

where \(r \) and \(K \) are positive constants.

a. Sketch the graph of \(f(y) \) versus \(y \), find the critical points, and determine whether each is asymptotically stable or unstable.

b. For \(0 \leq y \leq K \), determine where the graph of \(y \) versus \(t \) is concave up and where it is concave down.

c. Solve the Gompertz equation subject to the initial condition \(y(0) = y_0 \). Hint: You may wish to let \(u = \ln(y/K) \).