§ 3.5. Method of Undetermined Coefficients

\[ay'' + by' + cy = g(t) \]

Nonhomogeneous

1. Solve \(ay'' + by' + cy = 0 \) and find the general solution:
 \[y_h = c_1 y_1 + c_2 y_2 \]

2. Solve \(ay'' + by' + cy = g(t) \) for a particular solution:
 \[y_p = \ldots \text{(Method of Undetermined Coefficients)} \]

3. \(y = y_h + y_p \) is the general solution of the nonhomogeneous problem.

Method of Undetermined Coefficients

Find a particular solution by guess & plug in
1. \(g(t) = a_0 t^n + a_1 t^{n-1} + \cdots + a_n \) (polynomial)

\[y_p = t^s (A_0 t^n + A_1 t^{n-1} + \cdots + A_n) \]

Base form

Ex) \(g(t) = \frac{2t+1}{y_p = At+B} \)

2. \(g(t) = (a_0 t^n + \cdots + a_n) e^{\lambda t} \) (Poly) \cdot (exp)

\[y_p = t^s (A_0 t^n + A_n) e^{\lambda t} \]

Base form

Ex) \(g(t) = 3 \)

\[y'' + y' + y = 1 \]

\[y_p = A \]

\[y'' + y' + y = 0 \]

\(y_p = A \Rightarrow y_p' = y''_p = 0 \)

\(y_0 + 0 + A = 1 \)

\(y_p = 1 \)

3. \(g(t) = (a_0 t^n + \cdots + a_n) e^{\lambda t} \cos(\beta t) \) (or \(\sin(\beta t) \))

\((\text{poly}) \cdot (\text{exp}) \cdot (\cos \text{ or } \sin) \)

\[y_p = t^s ((A_0 t^n + A_n) e^{\lambda t} \cos(\beta t) + (B_0 t^n + B_n) e^{\lambda t} \sin(\beta t)) \]

Base form

Ex)
\[y'' + 4y' + 3y = 0 \]
\[e^{-3t} \]

\(y_p = e^{-3t} \)

\(y_p = Ae^{3t} \)

\[y' = -3Ae^{3t} \]

\[y'' = 9Ae^{3t} \]

\[9Ae^{3t} + 4(-3Ae^{3t}) + 3Ae^{3t} = e^{3t} \]

\(0 = e^{3t} \)

Cannot find a particular solution

\[y'' + 4y' + 3y = 0 \]

\[r^2 + 4r + 3 = 0 \]

\[y_h = C_1 e^{3t} + C_2 e^{-t} \]
\[r^2 + 4r + 3 = 0 \]
\[(r+3)(r+1) = 0 \]
\[r = -3, -1 \]

\[y_h = c_1 e^{-3t} + c_2 e^{-t} \]

⇒ Your initial guess (base form) wouldn't work if your guess includes a homogeneous solution. Then, we can modify our guess by multiplying by powers of t's.
Problem 1. Find the forms of particular solutions for the differential equations.

(a) $y'' - 3y' + 2y = -2t^2 e^{4t}$
$$y_p = (At^2 + Bt + C) e^{4t}$$

(b) $y'' - 3y' + 2y = -2t e^{2t}$
$$y_p = (At^2 + Bt + C) e^{2t}$$

(c) $y'' - 4y' + 4y = -2t e^{4t}$
$$y_p = (At^2 + Bt + C) e^{4t}$$

(d) $y'' - 4y' + 4y = -2t^2 e^{2t}$
$$y_p = (At^2 + Bt + C) e^{2t}$$
(e) \(y'' - 4y' + 4y = 3e^{2t} \cos(2t) \)

\[y_p = Ae^{2t} \cos(2t) + Be^{2t} \sin(2t) \]

(f) \(y'' - 4y' + 13y = 3e^{2t} \cos(2t) \)

\[y_p = Ae^{2t} \cos(2t) + Be^{2t} \sin(2t) \]

(g) \(y'' - 4y' + 13y = 3e^{2t} \cos(3t) \)

\[y_p = (Ae^{2t} \cos(3t) + Be^{2t} \sin(3t))e^{3t} \]

\[y'' - 4y' + 13y = 0 \]
\[r^2 - 4r + 13 = 0 \]
\[r = \frac{4 \pm \sqrt{16 - 52}}{2} \]
\[= 2 \pm 3i \]

\[y_h = C_1 e^{2t} \cos(3t) + C_2 e^{2t} \sin(3t) \]
Problem 2. Find the general solutions of the given differential equations using the method of undetermined coefficients.

(a) \[y'' - 2y' - 3y = 3e^{2t} \]

1. \[y'' - 2y' - 3y = 0 \]
 \[r^2 - 2r - 3 = 0 \]
 \[(r-3)(r+1) = 0 \]
 \[r = 3, -1 \]
 \[y_h = C_1 e^{3t} + C_2 e^{-t} \]

2. \[y'' - 2y' - 3y = 3e^{2t} \]

 Guess \[y_p = Ae^{2t} \] and plug in:
 \[y_p = Ae^{2t} \]
 \[y_p' = 2Ae^{2t} \]
 \[y_p'' = 4Ae^{2t} \]
 \[\Rightarrow (4Ae^{2t}) - 2(2Ae^{2t}) - 3(Ae^{2t}) = 3e^{2t} \]
 \[\Rightarrow 4A - 4A - 3A = 3 \]
 \[\Rightarrow A = -1 \]
 \[y_p = -e^{2t} \]

3. The general solution
 \[y = y_h + y_p = C_1 e^{3t} + C_2 e^{-t} - e^{2t} \]
(b)

1. \(y_h = C_1 e^{3t} + C_2 e^t \)
2. \(y_p = (At + B) e^t - t
= (At^2 + Bt)e^{-t} \)

\[y_p' = (2At + B)e^{-t} + (At^2 + Bt)(-e^{-t}) \]
\[= (-A + (2A-B)t + B)e^{-t} \]

\[y_p'' = (2At + (2A-B))e^{-t} + (-A + (2A-B)t + B)(-e^{-t}) \]
\[= (A + (-4A + B)t + (2A - 2B))e^{-t} \]

Coeff for \(t e^t \): \(A = -2, (A) = 2, (A) = 0 \) \(\implies A + 2A - 3A = 0 \) \(\implies 0 = 0 \)

Coeff for \(e^t \): \(-2(2A - B) - 3(B) = -3 \) \(\implies -8A = -3 \) \(\implies A = \frac{3}{8} \)

Coeff for \(t e^{-t} \): \(2A - 4B = 0 \) \(\implies B = \frac{1}{2} A = \frac{3}{16} \)

So,
\[y_p = \left(\frac{3}{8}t^2 + \frac{3}{16}t\right)e^{-t} \] and

the general solution
\[y = y_h + y_p = C_1 e^{3t} + C_2 e^t + \left(\frac{3}{8}t^2 + \frac{3}{16}t\right)e^{-t} . \]