Problem 1. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of $10 \sin(t/2)$ N (newtons) and moves in a medium that imparts a viscous force of 2 N when the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 3 cm/s,

a. formulate the initial value problem describing the motion of the mass.
b. Find the solution of the initial value problem.
c. Identify the transient and steady-state parts of the solution.
Problem 2. Consider the vibrating system described by the initial value problem

\[u'' + u = 3\cos(\omega t), \quad u(0) = 1, \quad u'(0) = 1. \]

a. Find the solution for \(\omega \neq 1 \).
b. Find the solution for $\omega = 1$.
Problem 3. Find the Laplace transform of the function.
 a. $f(t) = t^2$
b. \(f(t) = \cos(at) \), where \(a \) is a real constant.
c. \(f(t) = \begin{cases}
 t, & 0 \leq t < 1 \\
 2 - t, & 1 \leq t < 2 \\
 0, & 2 \leq t < \infty
\end{cases} \)
Problem 4. Find the inverse Laplace transforms

(a) \(F(s) = \frac{3}{s^2+4} \)

(b) \(F(s) = \frac{1-2s}{s^2+4s+5} \)
(c) \(F(s) = \frac{2s-3}{s^2-4} \)

(d) \(F(s) = \frac{8s^2-4s+12}{s(s^2+3)} \)