 # Practice Problems for Module 6

Sections 7.4 and 7.8

Directions. The following are review problems. We recommend you work the problems yourself, and then click "Answer" to check your answer. If you do not understand a problem, you can click "Video" to learn how to solve it. You can also follow the link for the full video page to find related videos.
1. Evaluate the following integrals.
1. $$\displaystyle \int \! \frac{3x^2+4x+3}{x^2+1} \, dx$$

$$\displaystyle \int \! \frac{3x^2+4x+3}{x^2+1} \, dx = 3x+2\ln|x^2+1|+C$$

To see the full video page and find related videos, click the following link.

2. $$\displaystyle \int \! \frac{x^2-4x+2}{(x+2)^2(x+1)} \, dx$$

$$\displaystyle \int \! \frac{x^2-4x+2}{(x+2)^2(x+1)} \, dx = -6\ln|x+2|+\frac{14}{x+2}+7\ln|x+1|+C$$

To see the full video page and find related videos, click the following link.

3. $$\displaystyle \int \! \frac{2x^3-4x^2+18x-11}{\left(x^2+9\right)\left(x^2+4\right)} \, dx$$

$$\displaystyle \int \! \frac{2x^3-4x^2+18x-11}{\left(x^2+9\right)\left(x^2+4\right)} \, dx = -\frac{5}{3}\arctan(3x)+\ln\left|x^2+4\right|+\frac{1}{2}\arctan(2x)+C$$

To see the full video page and find related videos, click the following link.

2. Determine if the following integrals converge or diverge. If it converges, compute the value.
1. $$\displaystyle \int_{-1}^2 \! \frac{9}{(x+1)^2} \, dx$$

Diverges

To see the full video page and find related videos, click the following link.

2. $$\displaystyle \int_0^\infty \! \frac{5x^2}{\sqrt{x^3+1}} \, dx$$

Diverges

To see the full video page and find related videos, click the following link.

3. $$\displaystyle \int_1^5 \! (x-1)\ln(x-1) \, dx$$

Converges
$$\displaystyle \int_1^5 \! (x-1)\ln(x-1) \, dx = 8\ln(4)-4$$

To see the full video page and find related videos, click the following link.

4. $$\displaystyle \int_3^\infty \! \frac{4}{3x^2+4x} \, dx$$

Converges
$$\displaystyle \int_3^\infty \! \frac{4}{3x^2+4x} \, dx=\ln\left(\frac{13}{9}\right)$$

To see the full video page and find related videos, click the following link.

3. Use the Comparison Test to determine if the following integrals converge or diverge.
1. $$\displaystyle \int_1^\infty \! \frac{3\sin^2(x)+2}{\sqrt{x}} \, dx$$

Diverges

To see the full video page and find related videos, click the following link.

2. $$\displaystyle \int_2^\infty \! \frac{\cos(x)+5}{\sqrt{x^3+7}} \, dx$$

Converges

To see the full video page and find related videos, click the following link.

3. $$\displaystyle \int_3^\infty \! \frac{10}{\sqrt{x}+5x\sqrt{x}} \, dx$$

Converges

To see the full video page and find related videos, click the following link.

4. $$\displaystyle \int_1^\infty \! \frac{2+e^{-x}}{x} \, dx$$

Diverges

To see the full video page and find related videos, click the following link.