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• Weight = Force 
• Work  = Force*Distance
                 = Weight*Distance



Spring problem (Hooke’s law & spring constant)
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Work done by stretching a spring by 𝑑1 to 𝑑2 where the resting 
length is 𝑑0. (Recall Hooke’s law: 𝐹 = 𝑘𝑥)
• Step 1 : plot a graph in the coordinate system 

• Set the the resting length = 0

• ቐ

𝑑0 ⇒ 𝑥 = 0 
𝑑1 ⇒ 𝑥1 = 𝑑1 − 𝑑0

𝑑2 ⇒ 𝑥2 = 𝑑2 − 𝑑0

• Step 2: Slicing the spring by 𝑑𝑥 segment and consider a segment 
at location 𝑥 (to be stretched by 𝑑𝑥 )
• Assume the force over 𝑥, 𝑥 + 𝑑𝑥  is constant, 𝐹(𝑥)

• Step 3: Find the work done by 𝐹 𝑥  over 𝑥, 𝑥 + 𝑑𝑥  
 𝑑𝑊 = 𝐹 𝑥 𝑑𝑥 = 𝑘𝑥 𝑑𝑥

• Step 4. Find the total work done by stretching the spring over 𝑥 ∈
𝑥1, 𝑥2  by integrating 𝑑𝑊
• 𝑊 = ׬ 𝑑𝑊 

 = 𝑥1׬

𝑥2 𝐹 𝑥 𝑑𝑥 𝑥1׬ =

𝑥2(𝑘𝑥)𝑑𝑥

 =
𝑘

2
𝑥2

𝑥1

𝑥2 =
𝑘

2
𝑥2

2 − 𝑥1
2 =

𝑘

2
𝑥2 + 𝑥1 (𝑥2 − 𝑥1)

Step 4. Find the spring constant

• 𝑘 =
2𝑊

𝑥2+𝑥1 (𝑥2−𝑥1) 

𝑑𝑥 

𝑑𝑊 = 𝐹 𝑥 𝑑𝑥 
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• Hooke’s law: 𝐹(𝑥) = 𝑘𝑥 w/ 𝑥 =displacement
• Adjust for the resting position: 10 ⇒  𝑥 = 0

• ቐ
10 ⇒ 𝑥 = 0
14 ⇒ 𝑥 = 4
18 ⇒ 𝑥 = 8

• Work needed to stretch from 𝑥 to 𝑥 + 𝑑𝑥
• 𝑑𝑊 = 𝐹 𝑥 𝑑𝑥 
 = 𝑘𝑥 𝑑𝑥

• Work needed to stretch from 4 to 8 
• 𝑊(24) = ׬ 𝑑𝑊 = ׬ 𝐹 𝑥 𝑑𝑥

 = ׬
4

8
𝑘𝑥 𝑑𝑥 

 =
1

2
𝑘𝑥2

4

8
= 𝑘

82−42

2

 = 𝑘
(8−4)(8+4)

2

 = 𝑘
4⋅12

2
= 24𝑘

• 24 = 24𝑘  ⇒  𝑘 = 1
𝑑𝑥 

𝑑𝑊 = 𝐹 𝑥 𝑑𝑥 



Lifting problem 
0

𝑑𝑥

𝑥

𝑙

Work done by lifting a cable weighing 𝑤 lb with a length of  𝑙 fts.
• Step 1 : plot a graph in the coordinate system (weight vs length)

• Set the top of the rope = 0

• Step 2: Slicing the cable by 𝑑𝑥 segment and consider a segment 
at location 𝑥 (to be lifted by 𝑥 )
• Find the weight of rope with length 𝑥 (=force, 𝐹)

• 𝐹 =
𝑤

𝑙
𝑥

• Step 3: Find the weight of 𝑑𝑥 cable segment (2 different ways)
• Let 𝑑𝐹 =Weight of 𝑑𝑥 cable segment:

• By differentiating 𝐹 =
𝑤

𝑙
𝑥, 

  𝑑𝐹 =
𝑤0

𝑙
𝑑𝑥   

• Step 4. Find the work done by lifting a cable segment 𝑑𝐹 lb with 
a length of  𝑥fts.

• 𝑑𝑊 = 𝑑𝐹 𝑥 =
𝑤

𝑙
𝑑𝑥 𝑥 =

𝑤

𝑙
𝑥𝑑𝑥

• Step 5. Find the total work by integrating 𝑑𝑊

• 𝑊 = ׬
0

𝑙 𝑤

𝑙
𝑥𝑑𝑥

0 𝑥                 𝑙

Weight(𝐹)

𝑤
𝐹 =

𝑤

𝑙
𝑥

Another way to find 
the weight of 𝑑𝑥 
rope segment

𝑑𝐹

𝑑𝑥
=

𝑤

𝑙
 

𝑑𝐹 =
𝑤0

𝑙
𝑑𝑥 

𝑙 
𝑤

𝑑𝑥
𝑑𝐹 (?)
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• Step 1 : plot a graph in the coordinate system (weight vs length)
• Set the top of the rope = 0

• Step 2: Slicing the cable by 𝑑𝑥 segment and consider a segment at 
location 𝑥 (to be lifted by 𝑥 )
• Find the weight of rope with length 𝑥 (=force, 𝐹)

• 𝐹 =
10

90
𝑥

• Step 3: Find the weight of 𝑑𝑥 cable segment
• Let 𝑑𝐹 =Weight of 𝑑𝑥 cable segment:

• By differentiating 𝐹 =
10

90
𝑥, 

  𝑑𝐹 =
10

90
𝑑𝑥   

• Step 4. Find the work done by lifting a cable segment 𝑑𝐹 lb with a length 
of  𝑥fts.

• 𝑑𝑊 = 𝑑𝐹 𝑥 =
10

90
𝑑𝑥 𝑥 =

1

9
𝑥𝑑𝑥

• Step 5. Find the total work by integrating 𝑑𝑊

• 𝑊 = 60׬

60 1

9
𝑥𝑑𝑥 =

1

2
⋅

1

9
𝑥2

60
90

 =
1

2
⋅

1

9
902 − 602 =

90−60 90+60

2⋅9
=

9 30−20 30+20

2⋅9
=

9⋅500

2⋅9
= 450

0 𝑥                 90

Weight(𝐹)

10

𝐹 =
10

90
𝑥

90

𝑥
𝑑𝑥

30

60
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Lifting problem overview
A 200-lb liquid is inside of 100 ft long cylinder with radius 2ft. How 
much work is required pump the water out of the cylinder? Assume 
the weight density of the liquid = 2 lb/ft3

• Step 1 : plot a graph in the coordinate system (tank shape vs 
depth): Set the top of the tank= 0 

• Step 2: Slicing the cylinder by 𝑑𝑥 height (Set the top = 0) and 
consider a disc at location 𝑥 (to be lifted by 𝑥 )
• Find the volume of the disc at 𝑥 

• 𝑑𝑣 = 𝜋22 𝑑𝑥 = 4𝜋𝑑𝑥
• Step 3: Find the weight of water within the disc (=force, 𝐹)

• water weight = (water volume)x(weight density)
• 𝑑𝐹 = 𝜌 𝜋𝑟2 𝑑𝑥 = 2 4𝜋𝑑𝑥 = 8𝜋𝑑𝑥 

• Step 4. Find the work done by pumping the water disc 𝑑𝐹 lb by a 
length of  𝑥fts.
• 𝑑𝑊 = 𝑑𝐹 𝑥 = 8𝜋𝑑𝑥 𝑥 = 8𝜋𝑥𝑑𝑥

• Step 5. Find the total work by integrating 𝑑𝑊

• 𝑊 = 0׬

100
8𝜋𝑥𝑑𝑥𝑑𝑥

Another way to find 
the 𝑑𝐹 (weight of a disc)
Step1. Find the weight 
up to depth 𝑥 

𝑊 = 𝜌 0׬

𝑥
𝜋𝑟2 𝑑𝑥 

      = 𝜌 𝜋(𝑟3/3)  
Step2. Differentiate 𝑊 
𝑑𝑊 = 𝜌 𝜋𝑟2 𝑑𝑥  

𝑥

𝑑𝑥
100

2
0

0 𝑥 100 

2 𝑦 = 2 
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Example (water level = integration limit)
A conical container has the radius 10 ft and height 30 ft. Suppose that this container 
is filled with water to a depth of 15 ft. How much work is required to pump all of the 
water out through a hole in the top of the container? Use the weight density of water 
= 62.4 lb/ft3

• Step 1 : plot a graph in the coordinate system (tank shape vs 
depth): Set the top of the tank = 0

• Step 2: Slicing the cylinder by 𝑑𝑥 height (Set the top = 0) and 
consider a disc at location 𝑥 (to be lifted by 𝑥 )
• Find the volume of the disc at 𝑥 

• 𝑑𝑣 = 𝜋𝑟2 𝑑𝑥 = 𝜋(𝑥2/9)𝑑𝑥
• Step 3: Find the weight of water within the disc (=force, 𝐹)

• water weight = (water volume)x(weight density)
• 𝑑𝐹 = 𝜌 𝜋𝑟2 𝑑𝑥 = 62.4𝜋 𝑥2/9 𝑑𝑥 = 6.93𝜋𝑥2𝑑𝑥 

• Step 4. Find the work done by pumping the water disc 𝑑𝐹 lb by a 
length of  𝑥fts.
• 𝑑𝑊 = 𝑑𝐹 𝑥 = 6.93𝜋𝑥2𝑑𝑥 𝑥 = 6.93𝜋𝑥3𝑑𝑥

• Step 5. Find the total work by integrating 𝑑𝑊 (Limit ??)

• 𝑊 = 𝟏𝟓׬

30
6.93𝜋𝑥3𝑑𝑥

0 𝑥                 30

𝑟

10 𝑟 =
1

3
𝑥 
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Example (spout = moving distance)

The tank shown is full of water. Find the work required to pump 
the water out of the spout. (Use 9800 𝑁/𝑚3 as water density)
• Step 1 : plot a graph in the coordinate system (tank shape vs 

depth): Set the top of the tank = 0

• Step 2: Slicing the tank by 𝑑𝑥 height (Set the top = 0) and 
consider a slab at location 𝑥 (to be lifted by 𝑥 )
• Find the volume of the disc at 𝑥 

• 𝑑𝑣 = 8(3 − 𝑥)𝑑𝑥
• Step 3: Find the weight of water within the disc (=force, 𝐹)

• water weight = (water volume)x(weight density)
• 𝑑𝐹 = 𝜌𝑑𝑣 = 9800 ⋅ 8(3 − 𝑥)𝑑𝑥

• Step 4. Find the work done by pumping the water disc 𝑑𝐹 lb by 
a length of  𝑥 + 2fts (due to spout).

• 𝑑𝑊 = 𝑑𝐹 𝑥 = 9800 ⋅ 8 3 − 𝑥 𝑑𝑥 (𝑥 + 2)

 = 9800 ⋅ 8 3 − 𝑥 (𝑥 + 2) 𝑑𝑥
• Step 5. Find the total work by integrating 𝑑𝑊 (Limit ??)

• 𝑊 = (8 ⋅ 9800) 0׬

3
3 − 𝑥 (𝑥 + 2)𝑑𝑥

−2        𝑥            3

1.5

−1.5

𝑦 = −0.5𝑥 + 1.5

𝑦 = 0.5𝑥 − 1.5

3 − 𝑥

𝑑𝑥
8

−0.5𝑥 + 1.5 − 0.5𝑥 − 1.5  
 = 3 − 𝑥
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3.2 Integration by Parts

The tank shown is full of water. Find the work required to pump the water 
out of the spout. (Use 9800 𝑁/𝑚3 as water density)
• Step 1 : plot a graph in the coordinate system (tank shape vs depth): 

Set the top of the tank = 0

• Step 2: Slicing the tank by 𝑑𝑥 height (Set the top = 0) and consider a 
slab at location 𝑥 (to be lifted by 𝑥 )
• Find the volume of the disc at 𝑥 

• 𝑑𝑣 = 𝜋(102 − 𝑥2)𝑑𝑥
• Step 3: Find the weight of water within the disc (=force, 𝐹)

• water weight = (water volume)x(weight density)
• 𝑑𝐹 = 𝜌𝑑𝑣 = 9800𝜋(102 − 𝑥2)𝑑𝑥

• Step 4. Find the work done by pumping the water disc 𝑑𝐹 lb by a 
length of  𝑥 + 2fts (due to spout).
• 𝑑𝑊 = 𝑑𝐹 𝑥 = 9800𝜋(102 − 𝑥2)𝑑𝑥 (𝑥 + 2)
 = 9800𝜋(102 − 𝑥2)(𝑥 + 2)𝑑𝑥

• Step 5. Find the total work by integrating 𝑑𝑊 (Limit ??)

• 𝑊 = 9800𝜋 𝟑׬

10
(102 − 𝑥2)(𝑥 + 2)𝑑𝑥

A hemispherical tank has the shape shown below. The tank has a radius of 10 meters with
a 2 meter spout at the top of the tank. The tank is filled with water to a depth of 7 meters. The
weight density of water is 𝜌 =  9800𝑁/𝑚3. Suppose we want to find the work required to pump 
the water through the spout

10

2

7

𝑦2 = (102 − 𝑥2)

−2

3 10

𝑑𝑥

102 − 𝑥2 

𝑑𝑥

𝑉  = 𝜋𝑟2𝑑𝑥 

= 𝜋 102 − 𝑥2 𝑑𝑥
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Choice of 𝒖 and 𝒗: LIATE method for IBP ׬ 𝒖𝒗′ 𝒅𝒙 = 𝒖𝒗 − ׬ 𝒖′𝒗 𝒅𝒙

▪ The LIATE method offers guidelines for determining when and how to apply IBP
▪ IBP may work for 𝑢𝑣′ when 𝑢 and 𝑣′ are LIATE functions
▪ 𝑢 and 𝑣′ can be chosen by  LIATE  order

▪ LIATE method (general guideline for IBP: combinations of LIATE ⇒ IBP)
𝑢----Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential----𝑣′ 

▪ Why LIATE works for IBP: ׬ 𝑢𝑣′ 𝑑𝑥 = 𝑢𝑣 − ׬ 𝑢′𝑣 𝑑𝑥 ?

▪ 𝑢 becomes “simpler” when differentiated (׬ 𝑢′𝑣 𝑑𝑥 becomes easier). 

▪ 𝑣′ is readily integrated to obtain 𝑣.
▪ For IBP, we need 𝑢, 𝑢′ and 𝑣, 𝑣′

Example Evaluate ׬ 𝑥𝑒𝑥𝑑𝑥 
𝑢----Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential----𝑣′ 
                                                                              𝑥 𝑒𝑥

    𝑢′-- 1                                              𝑒𝑥--𝑣  
׬ 𝑥𝑒𝑥𝑑𝑥 = 
׬    𝑢𝑣′𝑑𝑥 =  𝑢𝑣 − ׬ 𝑢′𝑣𝑑𝑥

 = 𝑥𝑒𝑥 − 𝑒𝑥 + 𝐶   

𝑥𝑒𝑥 − ׬ 1 ⋅ 𝑒𝑥𝑑𝑥 
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Tabular method

𝑢----L  I  A  T  E----𝑣′ 
     ln 𝑥   1 

𝑢′--
1

𝑥
 𝑥 --𝑣      

׬ ln 𝑥 × 1𝑑𝑥 = 
׬    𝑢𝑣′ =  𝑢𝑣 − ׬ 𝑢′𝑣 

= 𝑥 ln 𝑥 − ׬ 1𝑑𝑥 

 = 𝑥 ln 𝑥 − 𝑥 + 𝐶 

𝑥 ln 𝑥 − ׬
1

𝑥
⋅ 𝑥𝑑𝑥

Evaluate ׬ ln 𝑥 𝑑𝑥 

[Hint: Consider ׬ 1 ⋅ ln 𝑥 𝑑𝑥

Antiderivative of 𝐥𝐧 𝒙

׬ 𝐥𝐧 𝒙 𝒅𝒙 = 𝒙 𝐥𝐧 𝒙 − 𝒙 + 𝑪 

׬ 𝑢𝑣′ = 
 𝑢𝑣 

׬−                              𝑢′𝑣 

Formula method                                  Tabular method

׬−   

𝑢                             𝑣′ ׬  

𝑣 

+ 

𝑢′ 

𝑑

𝑑𝑥
 

𝑢                    𝑣′ 
  ln 𝑥                1

𝑢′ 

1/𝑥 

𝑣 

 𝑥

+

׬−
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3.2 Integration by Parts

Example

𝑢                        𝑣′ 
atan 𝑥                 1

𝑢′ 

1

1+𝑥2

𝑣 

  𝑥

+

׬−

Evaluate ׬ tan−1 𝑥 𝑑𝑥 by the tabular method

Hint: ׬ tan−1 𝑥 𝑑𝑥 = ׬ 1⋅tan−1 𝑥 𝑑𝑥 

𝑢----L  I  A  T  E----𝑣′ 
       tan−1 𝑥   1 

׬
0

1
tan−1 𝑥 = 

                        = 𝑥 tan−1 𝑥 0
1 −

1

2
ln 1 + 𝑥2

0
1 (𝑢-sub)

        = tan−1(1) − 0 −
1

2
ln 2 − ln 1  

  =
𝜋

4
−

1

2
ln 2  

 

𝑥 tan−1 𝑥 0
1 − 0׬

1 𝑥

1+𝑥2 𝑑𝑥 



Repeated IBP
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Vanishing Repeated IBP case
• ׬ 𝑥𝑛𝑒𝑥𝑑𝑥 or ׬ Polynomials 𝑒𝑥𝑑𝑥

• ׬ 𝑥𝑛sin𝑥𝑑𝑥  or ׬ Polynomials sin 𝑥 𝑑𝑥

• ׬ 𝑥𝑛cos𝑥𝑑𝑥  or ׬ Polynomials cos 𝑥 𝑑𝑥

Repeat IBP until polynomials vanish by differentiation

Cyclic Repeated IBP case
• ׬ 𝑒𝑥sin𝑥𝑑𝑥 

• ׬ 𝑒𝑥cos𝑥𝑑𝑥 

Repeat IBP until the same trigonometric function appears by differentiation
• sin 𝑥 ⇒  cos 𝑥 ⇒ − sin 𝑥

 
𝑑

𝑑𝑥
  

𝑑

𝑑𝑥
 

• cos 𝑥 ⇒ − sin 𝑥  ⇒ − cos 𝑥



׬ 𝒙𝟐𝒆𝒙 𝒅𝒙 

𝑢----L  I  A  T  E----𝑣′ 
 𝑥2    𝑒𝑥  

׬ 𝒙𝟐𝒆𝒙𝒅𝒙 = 
׬     𝑢𝑣′ =  𝑢𝑣 − ׬ 𝑢′𝑣 

= 𝑥2𝑒𝑥 − ׬ 𝟐𝒙𝒆𝒙𝒅𝒙  (Another IBP)

׬−                      𝑢𝑣′ = 

                             −𝑢𝑣 + ׬ 𝑢′𝑣           

 = 𝑥2𝑒𝑥 
 = 𝑥2𝑒𝑥 − 2𝑥𝑒𝑥 + ׬ 𝟐𝒆𝒙 𝒅𝒙 (Another IBP)
׬                                                 𝑢𝑣′ = 

                                                  + 𝑢𝑣 − ׬ 𝑢′𝑣           

 = 𝑥2𝑒𝑥 − 2𝑥𝑒𝑥

= 𝑥2𝑒𝑥 − 2𝑥𝑒𝑥 + 2𝑒𝑥 + 𝐶

We can combine these steps into one 
table

Vanishing Repeated IBP (׬ 𝒙𝒏𝒆𝒙𝒅𝒙 or ׬ 𝒙𝒏𝐬𝐢𝐧𝒙𝒅𝒙)
Evaluate ׬ 𝑥2𝑒𝑥 𝑑𝑥      

3.2 Integration by Parts

𝑥2𝑒𝑥 − ׬ 2𝑥𝑒𝑥𝑑𝑥 

Because of the − sign in 

׬ 𝟐𝒙𝒆𝒙𝒅𝒙, we switch 

the sign associated with 
multiplication

𝑢                    𝑣′ 
  𝑥2                𝑒𝑥  

𝑢′ 

2𝑥 

𝑣 

  𝑒𝑥

+

׬−
− ׬ 𝟐𝒙𝒆𝒙 𝒅𝒙 

𝑢                    𝑣′ 
  2𝑥                𝑒𝑥  

𝑢′ 

2 

𝑣 

  𝑒𝑥

−

׬+

+2𝑒𝑥 − ׬ 0 ⋅ 𝑒𝑥𝑑𝑥 

2𝑥   𝑒𝑥

׬ 𝟐𝒆𝒙 𝒅𝒙 

𝑢                    𝑣′ 
  2                𝑒𝑥  

𝑢′ 

0 

𝑣 

  𝑒𝑥

+

׬−

−2𝑥𝑒𝑥 + ׬ 2𝑒𝑥 𝑑𝑥 

2   𝑒𝑥

+

−

+

׬−



3.2 Integration by Parts

Example

𝑣 

 −𝑒−𝑥

  𝑒−𝑥

 −𝑒−𝑥 

𝑢′ 

2𝑥

2 

0  
׬−

+

𝑢                    𝑣′ 
  𝑥2       𝑒−𝑥  

𝑢----L  I  A  T  E----𝑣′ 
 𝑥2    𝑒−𝑥  

−

+

0׬

1 𝑥2

𝑒2 𝑑𝑥 = −𝑥2𝑒−𝑥 − 2𝑥𝑒−𝑥 − 2𝑒−𝑥
0
1 

  = −𝑒−1 − 2𝑒−1 − 2𝑒−1 − −2  
  = 2 − 5𝑒−1



Compute ׬ 𝑥 ln 𝑥 𝑑𝑥

[Sol 1] IBP 

[Sol2] 𝑢 −sub

׬ 𝑥 ln 𝑥 𝑑𝑥 =
1

2
׬ 𝑥 2 ln 𝑥 𝑑𝑥 =

1

2
׬ 𝑥 ln 𝑥2 𝑑𝑥 

 𝑢 −sub : 𝑢 = 𝑥2  ⇒ 𝑑𝑢 = 2𝑥𝑑𝑥    

 =
1

4
׬ ln 𝑢 𝑑𝑢 

 =
1

4
𝑢 ln |𝑢| − 𝑢 + 𝐶 

 =
1

4
𝑥2 ln 𝑥2 − 𝑥2 + 𝐶

3.2 Integration by Parts

Example

𝑢----L  I  A  T  E----𝑣′ 
     ln 𝑥   𝑥 

𝑢′-
1

𝑥
  

𝑥2

2
 -𝑣

׬ ln 𝑥 ⋅ 𝑥𝑑𝑥 = 
׬    𝑢𝑣′ =  𝑢𝑣 − ׬ 𝑢′𝑣 

 =
𝑥2

2
ln 𝑥 − ׬

𝑥

2
𝑑𝑥 

 =
𝑥2

2
ln 𝑥 −

𝑥2

4
+ 𝐶 

𝑥2

2
ln 𝑥 − ׬

1

𝑥
⋅

𝑥2

2
𝑑𝑥 

𝑢                    𝑣′ 
  ln 𝑥                
𝑥𝑢′ 

1/
𝑥 

𝑣 

𝑥2/
2

+

׬−



Cyclic Repeated IBP (׬ 𝒆𝒙𝐬𝐢𝐧𝒙𝒅𝒙 or ׬ 𝒙𝒏𝐜𝐨𝐬𝒙𝒅𝒙)
Evaluate ׬ 𝑒𝑥 sin 𝑥 𝑑𝑥

׬  𝑒𝑥 sin 𝑥 𝑑𝑥 = 𝑒𝑥 sin 𝑥 − 𝑒𝑥 cos 𝑥 + ׬ 𝑒𝑥 − sin 𝑥 𝑑𝑥 

׬ 𝒆𝒙 𝐬𝐢𝐧 𝒙 𝒅𝒙 = 𝑒𝑥 sin 𝑥 − 𝑒𝑥 cos 𝑥 − ׬ 𝒆𝒙 𝐬𝐢𝐧 𝒙 𝒅𝒙 

 2 ׬ 𝒆𝒙 𝐬𝐢𝐧 𝒙 𝒅𝒙 = 𝑒𝑥 sin 𝑥 − cos 𝑥

׬  𝒆𝒙 𝐬𝐢𝐧 𝒙 𝒅𝒙 =
1

2
𝑒𝑥 sin 𝑥 − cos 𝑥

Evaluate ׬ 𝑒𝑥 cos 𝑥 𝑑𝑥 

׬  𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 cos 𝑥 − 𝑒𝑥(− sin 𝑥) + ׬ 𝑒𝑥 − cos 𝑥 𝑑𝑥 

׬ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 cos 𝑥 + 𝑒𝑥 sin 𝑥 − ׬ 𝑒𝑥 cos 𝑥 𝑑𝑥 

 2 ׬ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 sin 𝑥 + cos 𝑥

׬  𝑒𝑥 cos 𝑥 𝑑𝑥 =
1

2
𝑒𝑥 sin 𝑥 + cos 𝑥

3.2 Integration by Parts

𝑢 _____ 𝑣′

sin 𝑥 𝑒𝑥

cos 𝑥 𝑒𝑥

− sin 𝑥 𝑒𝑥

𝑢----L  I  A  T      E----𝑣′ 
 sin 𝑥  𝑒𝑥

+

−
׬+  

𝑢 _____ 𝑣′

cos 𝑥 𝑒𝑥

− sin 𝑥 𝑒𝑥

− cos 𝑥 𝑒𝑥

𝑢----L  I  A  T      E----𝑣′ 
 cos 𝑥  𝑒𝑥

+

−
׬+  



3.2 Integration by Parts

Example (𝒖 −sub + IBP)

Rewrite

׬ 𝑥5𝑒𝑥3
𝑑𝑥 = ׬ 𝑥3𝑒𝑥3

𝑥2𝑑𝑥  

𝑢 −sub 

𝑢 = 𝑥3  ⇒ 𝑑𝑢 = 3𝑥2𝑑𝑥    ⇒ 𝑥2𝑑𝑥 =
1

3
𝑑𝑢

׬ 𝑥3𝑒𝑥3
𝑥2𝑑𝑥 = ׬ 𝑢𝑒𝑢 1

3
𝑑𝑢  

 =
1

3
׬ 𝑢𝑒𝑢𝑑𝑢

 =
1

3
𝑢𝑒𝑢 − 𝑒𝑢 + 𝐶 

 =
1

3
𝑥3𝑒𝑥3

− 𝑒𝑥3
+ 𝐶

Evaluate ׬ 𝑥𝑒𝑥𝑑𝑥 
𝑢----Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential----𝑣′ 
                                                                              𝑥 𝑒𝑥

    𝑢′-- 1                                              𝑒𝑥--𝑣  
׬ 𝑥𝑒𝑥𝑑𝑥 = 
׬    𝑢𝑣′𝑑𝑥 =  𝑢𝑣 − ׬ 𝑢′𝑣𝑑𝑥

 = 𝑥𝑒𝑥 − 𝑒𝑥 + 𝐶   

𝑥𝑒𝑥 − ׬ 1 ⋅ 𝑒𝑥𝑑𝑥 



Problems
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