Section 11.10 Maclaurin Series to Memorize

Have these Maclaurin series memorized, and know when to use them. The following Maclaurin Series may be used, without proof, in order to achieve a higher goal.

1. $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, with radius of convergence $R=1$
2. $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, with radius of convergence $R=\infty$
3. $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$, with radius of convergence $R=\infty$
4. $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$, with radius of convergence $R=\infty$
5. $\arctan x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$, with radius of convergence $R=1$

To be clear, with enough practice, you will learn how to manipulate the series above to achieve a different result. A few illustrations follow:
(a) To express $g(x)=x^{3} \sin \left(x^{4}\right)$ as a Maclaurin Series, we can state $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ without proof, and then manipulate this result to express $g(x)$ as a Maclaurin Series.
(b) To express $g(x)=\ln \left(4+x^{3}\right)$ as a Maclaurin Series, we can state $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ without proof, then manipulate this result to express $g(x)$ as a Maclaurin Series.
(c) To express $g(x)=\frac{x^{3}}{(1-4 x)^{2}}$ as a Maclaurin Series, we can state $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ without proof, then manipulate this result to express $g(x)$ as a Maclaurin Series.

