Section 11.10 Maclaurin Series to Memorize

Have these Maclaurin series memorized, and know when to use them. The following Maclaurin Series may be used, without proof, in order to achieve a higher goal.

1.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, with radius of convergence $R = 1$

2.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, with radius of convergence $R = \infty$

3.
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
, with radius of convergence $R = \infty$

- 4. $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$, with radius of convergence $R = \infty$
- 5. $\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$, with radius of convergence R = 1

To be clear, with enough practice, you will learn how to manipulate the series above to achieve a different result. A few illustrations follow:

- (a) To express $g(x) = x^3 \sin(x^4)$ as a Maclaurin Series, we can state $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ without proof, and then manipulate this result to express g(x) as a Maclaurin Series.
- (b) To express $g(x) = \ln(4 + x^3)$ as a Maclaurin Series, we can state $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ without proof, then manipulate this result to express g(x) as a Maclaurin Series.
- (c) To express $g(x) = \frac{x^3}{(1-4x)^2}$ as a Maclaurin Series, we can state $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ without proof, then manipulate this result to express g(x) as a Maclaurin Series.