Review of Sections 4.9, 5.1, 5.2

1. Find the most general antiderivative for a function f(x).

(a)
$$f(x) = x^2 - 3x + 2$$

(b)
$$f(x) = x(12x + 8)$$

(c)
$$f(x) = 2x^{2/5} + 4x^{-4/5}$$

(d)
$$f(x) = (x-7)^2$$

(e)
$$f(x) = \sec^2 x + \frac{4}{1+x^2}$$

(f)
$$f(x) = \frac{1 + 2x + 3x^2}{x^3}$$

(g)
$$f(x) = 2\sin x + 3\cos x - \frac{1}{\sqrt{1-x^2}}$$

(h)
$$f(x) = 2^x + e^x$$

(i)
$$f(x) = \frac{2x^2 + 5}{x^2 + 1}$$

2. Find f(x), if

(a)
$$f''(x) = 20x^3 - 12x^2 + 6x$$

(b)
$$f'(x) = \frac{3}{1+x^2}$$

(c)
$$f''(x) = \frac{1}{x^2}$$
, $x > 0$, $f(1) = 0$, $f(2) = 1$

	5	

4. A car breaks with a constant deceleration of 16 ft/s^2 , producing skid marks measuring 200 ft before coming to a stop. How fast was the car traveling when the breaks were first applied?

5	6. A stone is dropped from a cliff 450 ft above the ground.
	(a) Find the height of the stone at time t .
	(b) How long does in take the stone to reach the ground?
	(c) With what velocity does it strike the ground?
	(-)
	(d) If the stone is thrown down with a speed of 5 m/s, how long does it take to reach the ground?
	(d) If the stone is thrown down with a speed of 5 m/s, now long does to take to reach the ground.
	6

6. Use six rectangles to find estimates of each type for the area under the given graph of f from x=0 to x=12.

(a) L_6

(b) R_6

(c) M_6

7. Estimate the area under the graph of $f(x) = 1 + x^2$ from $x = -1$ to $x = 2$ using three rectangles an	ind
---	-----

(a) Right end-points

(b) Left end-points

(c) Midpoints

8. Find an expression for the area under the graph of $f(x) = \frac{2x}{x^2 + 1}$, $1 \le x \le 3$ as a limit. Do not evaluate the limit.

9. Determine a region whose area is equal to the given limit. Do not evaluate the limit.

$$\sum_{i=1}^{n} \frac{3}{n} \sqrt{1 + \frac{3i}{n}}.$$

10. Express $\int_0^1 \frac{e^x}{1+x} dx$ as a limit. Do not evaluate.

11. The graph of f is shown.

Evaluate each integral by interpreting it in terms of areas.

(a)
$$\int_0^2 f(x)dx$$

(b)
$$\int_0^5 f(x)dx$$

(c)
$$\int_0^9 f(x)dx$$

$$\int_{5}^{7} f(x)dx$$

12. Evaluate the integral by interpreting it in terms of areas.

(a)
$$\int_{-3}^{0} \left(1 + \sqrt{9 - x^2}\right) dx$$

(b)
$$\int_0^1 |2x+1| \ dx$$

13. Express the limit as a definite integrals

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{1 + \left(i/n\right)^2}$$

Review for Exam 3.

1. Find the linear approximation for the function $f(x) = \frac{1}{\sqrt{x}}$ at a = 4.

2. Use differentials to approximate the number $(1.999)^4$.

3. Find all number(s) c that satisfy the conclusion of the Mean Value Theorem for the function $f(x) = x^3 - 3x + 2$ on the interval [0, 2].

4. Find the absolute minimum value of the function $f(x) = x^3 - 6x^2 + 1$ on the interval [-1, 1].

5. The function f(x) is defined at all real numbers except 2 and $f'(x) = \frac{(x+1)(x-3)^2}{2-x}$. At what x-value(s) does f(x) have a local minimum?

6. Find the x-coordinate(s) of all the inflection points for the function f(x) with $f''(x)=(x^2-x-12)(x^2-4x)$.

7. Calculate the limit.

(a)
$$\lim_{x \to -\infty} (\ln(2x^2 + 3) - \ln(x^2 + 1))$$

(b)
$$\lim_{x \to 1} \frac{1 - x + \ln x}{x^2 - 2x + 1}$$

(c)
$$\lim_{x \to 0^+} (3x^2 + 4x + 1)^{\frac{1}{x}}$$

