MATH 152/172

- 1. Find the area inside the curve $r = -2\sin\theta$ in the third quadrant. At what angles will the above curve intersect with the polar curve r = 1?
- 2. Find the area of the region enclosed by one loop of the curve $r = 4 \cos 3\theta$.
- 3. Find the area of the region inside the curve $r = 3\cos\theta$ and outside the curve $r = 1 + \cos\theta$.
- 4. Evaluate the integral

(a)
$$\int t^2 \cos(1-t^3) dt$$

(b) $\int \frac{x^2}{\sqrt{1-x}} dx$
(c) $\int x^3 e^{x^2} dx$
(d) $\int (x^3 + 2x^2 - x) e^{3x} dx$
(e) $\int \frac{\ln x}{x^2} dx$
(f) $\int e^{3x} \sin(2x) dx$
(g) $\int_{0}^{\pi/8} \sin^2(2x) \cos^3(2x) dx$
(h) $\int \sin^2 x \cos^4 x dx$
(i) $\int_{0}^{\pi/4} \tan^4 x \sec^4 x dx$
(j) $\int \tan^3 x \sec^3 x dx$
(k) $\int (4x^2 - 25)^{-3/2} dx$
(l) $\int \frac{(x-1)^2}{5\sqrt{24-x^2+2x}} dx$
(m) $\int \frac{5x^2 + x + 12}{x^3 + 4x} dx$

5. Let \mathcal{R} be the region in the first quadrant bounded by the curves $y = x^3$ and $y = 2x - x^2$.

- (a) Find the area fo \mathcal{R}
- (b) Find the volume obtained by rotating \mathcal{R} about the line x = -1.
- (c) Find the volume obtained by rotating \mathcal{R} about the line y = 2.

6. Find the volume of the solid obtained by rotating the region bounded by y = x and $y = x^2$ about

- (a) the line y = -1
- (b) the *y*-axis

(c) the line x = 4

- 7. The base of solid S is the triangular region with vertices (0,0), (2,0), and (0,1). Cross-sections perpendicular to the x-axis are semicircles. Find the volume of S.
- 8. A cable 40 feet long weighing 6 pounds per foot is hanging off the side of a 50 foot tall building. At the bottom of the cable is a bucket of rocks weighing 100 pounds. How much work is required to pull 10 feet of the cable to the top of the building?
- 9. A spring has a natural length of 20 cm. If a 10 J work is required to keep it stretched to a length 25 cm, how much work is done in stretching the spring from 30 cm to 80 cm?
- 10. A tank of water is 20 ft long and has a vertical cross section in a shape of an equilateral triangle with sides 2 ft long. The tank is filled with water to a depth of 18 inches. Determine the amount of work needed to pump all of the water to the top of the tank. The weight of water is 62.5 lb/ft^3 .
- 11. Find the average value of $f = \sin^2 x \cos x$ on $[-\pi/2, \pi/4]$.
- 12. Write out the form of the partial fraction decomposition (do not try to solve)

$$\frac{20x^3 + 12x^2 + x}{(x^3 - x)(x^3 + 2x^2 - 3x)(x^2 + x + 1)(x^2 + 9)^2}$$

13. Determine whether the given integral is convergent or divergent.

(a)
$$\int_{1}^{\infty} \frac{4 + \cos^4 x}{x} dx$$

(b)
$$\int_{1}^{\infty} \frac{3 + \sin x}{x^2} dx$$

(c)
$$\int_{0}^{\infty} \frac{1}{\sqrt{x} + e^{4x}} dx$$

14. Compute the following integrals or show that they diverge.

(a)
$$\int_{e}^{\infty} \frac{dx}{x \ln^{5} x}$$

(b) $\int_{-\infty}^{0} (1+x)e^{x} dx$
(c) $\int_{-\infty}^{\infty} \frac{6x^{5}}{(x^{6}+3)^{3}} dx$
(d) $\int_{0}^{2020} \frac{1}{\sqrt{2020-x}} dx$

15. Find the following limits

(a)
$$\lim_{n \to \infty} \frac{(-1)^n}{n^3}$$

(b)
$$\lim_{n \to \infty} \frac{\sqrt{n}}{\ln n}$$

(c)
$$\lim_{n \to \infty} \frac{1 - 2n^2}{\sqrt[3]{n^6 + 1} + 2n^2}}$$

(d) $\lim_{n \to \infty} \left(\frac{1}{3} \ln(n^3 + 5n - 2) - \ln(2n - 1) \right)$

16. Show that the sequence defined by $a_1 = 3$ and $a_{n+1} = 6 - \frac{8}{a_n}$ is increasing and bounded above. Find its limit.

17. If the series $\sum_{n=1}^{\infty} a_n$ has a partial sum of $s_n = \frac{n}{2n+1}$, find a_4 and the sum of the series.

18. Find the sum of the series

(a)
$$\sum_{n=1}^{\infty} \frac{2^{2n+1}}{3^{3n-1}}$$

(b) $\sum_{n=3}^{\infty} \frac{1}{n^2 - 4}$
(c) $\sum_{n=2}^{\infty} \frac{3^n}{5^n n!}$

19. Which of the following series is convergent?

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{n^{5/7} + 1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{3^n}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

20. Which of the following series is absolutely convergent?

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$$

(b) $\sum_{n=0}^{\infty} \frac{(-3)^n}{n!}$
(c) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$
(d) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{\sqrt{n-2}}$
(e) $\sum_{n=0}^{\infty} (-1)^n \frac{2^{2n}}{3^{3n}}$

21. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}$.

22. Find a power series centered at x = 0 for the given function function and determine the radius of convergence.

(a)
$$f(x) = \frac{x}{1 - 8x^3}$$

(b)
$$f(x) = \ln(3 - 2x)$$

(c) $f(x) = \frac{x^2}{(1 + 9x)^3}$

23. Find the Taylor series for the function $f(x) = \sqrt{x}$ at a = 16.

- 24. Find the Maclaurin series for the function $f(x) = x^2 \ln(1 + x^3)$.
- 25. Evaluate the integral $\int_{0}^{1/3} \frac{1}{1+x^7} dx$ as an infinite series.
- 26. Find the length of the curve $x(t) = 3t t^3$, $y(t) = 3t^2$, $0 \le t \le 2$.
- 27. Find the area of the surface obtained by rotating the curve $y = x^3$, $0 \le x \le 2$ about the x-axis.
- 28. Find the area of the surface obtained by rotating the curve $x = \sqrt{2y y^2}$, $0 \le y \le 1$ about the y-axis.