Week in Review Math 152

Week 03

Volumes by Slicing: Disks and Washers Volume by Cylindrical Shells

General slicing method for any volume

The solid whose base is the region bounded by semicircle $y=\sqrt{1-x^{2}}$ and the x-axis. And whose cross section through the solid perpendicular to the x axis are squares. Find the volume of the solid.
Step2. Find the size of a slice at x or y

- At x : Thickness $d x \Rightarrow$ Cross section $A(x)$
- At y : Thickness $d y \Rightarrow$ Cross section $A(y)$

Step3. Find the volumnof a slice at x or y

- At x : Thickness $d x \Rightarrow$ Cross section $A(x)$
- $d V=A(x) d x$
- At y : Thickness $d y \Rightarrow$ Cross section $A(y)$
- $d V=A(y) d y$

Step4. Find the upper/lower limits for x or y Step5. Set up integral and evaluate
$V=\int_{a}^{b} A(x) d x$ or $V=\int_{c}^{d} A(y) d y$

- Limit for $x:[-1,1]$
- $V=\int_{a}^{b} A(x) d x$
$=\int_{-1}^{1}\left(1-x^{2}\right) d x=2 \int_{0}^{1}\left(1-x^{2}\right) d x$
$=2\left[x-\frac{1}{2 x^{2}}\right]_{0}^{1}=1$

A M Example

Find the volume of the solid whose base is the ellipse $x^{2}+4 y^{2}=4$
and whose cross-sections perpendicular to the y-axis are squares.
Evaluate your integral.

$\widehat{\mathbf{A}}$ Example

The base of a solid is the region bounded by the curve $y=5-x^{2}$ and the x-axis. Cross-Sections perpendicular to the y-axis are rectangles with height equal to twice the base. Find the volume of this solid.

$\widehat{\mathbf{A}}$ Example

Consider the solid S whose base is the region bounded by $y=4-x^{2}$ and $y=0$. Cross sections perpendicular to the y-axis are semicircles. Find the volume of S.

$\widehat{\mathbf{A}}$ Example

Consider the solid S described here. The base of S is the region bounded by $y=x^{2}$ and $y=4$. Cross sections perpendicular to the x-axis are squares. Find the volume of S.

$\widehat{\mathbf{A}}$ Volume by disks perpendicular to the x axis

Find the volume of the solid that is
Volume of solid of revolution around x axis Step 1: Plot the graph obtained when the region under the curve $y=\sqrt{x}$ over the interval $[1,4]$ is revolved about the x-axis
Step2. Find the size of a perpendicular slice at x At x : Thickness $d x \Rightarrow$ Cross section $A(x)$

$$
\pi[f(x)]^{2}
$$

Step3. Find the volume of a slice at x

- At x : Thickness $d x \Rightarrow$ Cross section $A(x)$
- $d V=\pi[f(x)]^{2} d x$

Step4. Find the upper/lower limits for x
Step5. Set up integral and evaluate

Radius
$=\sqrt{x}$
$d x$ $\int_{d x}^{A(x)=} \begin{aligned} & \pi(\sqrt{x})^{2}\end{aligned}$

$$
V(\|)=\pi[f(x)]^{2} d x
$$

$$
1 \leq x \leq 4 \text { (limits) }
$$

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi[f(x)]^{2} d x
$$

$$
\begin{aligned}
V & =\int_{a}^{b} \pi[f(x)]^{2} d x \\
& =\int_{1}^{4} \pi x d x \\
& =\frac{\pi}{2}\left[x^{2}\right]_{1}^{4} \\
& =\frac{\pi}{2}[16-1]=\frac{15}{2} \pi
\end{aligned}
$$

$\widehat{\mathbf{A}}$ Volume by Washer perpendicular to the x axis

Find the volume of the solid that is obtained when the region between the curve $y=\sqrt{x}$ and $y=2$ over the interval [1, 4] is revolved about the x-axis
Step2. Find the size of a perpendicular slice at x

- At x : Thickness $d x \Rightarrow$ Cross section $A(x)$
- Washer $=$ Large disc - small disc

$$
=\pi[f(x)]^{2}-\pi[g(x)]^{2}
$$

Step3. Find the volume of a slice at x

- At x : Thickness $d x \Rightarrow$ Cross section $A(x)$

$$
\text { - } d V=\pi\left([f(x)]^{2}-[g(x)]^{2}\right) d x
$$

Step4. Find the upper/lower limits for x
Step5. Set up integral and evaluate

$$
\begin{aligned}
V & =\int_{a}^{b} A(x) d x \\
& =\int_{a}^{b} \pi\left([f(x)]^{2}-[g(x)]^{2}\right) d x
\end{aligned}
$$

Volume of solid of revolution around x axis Step 1: Plot the graph of $f(x), g(x) \mathrm{w} / f>g$

$$
D=\int_{d x}^{\pi_{i}(\sqrt{x}\}^{2}}-\bigcup_{d x}^{\mathrm{A}(x)}=
$$

$$
V(@)=\pi\{\sqrt{x}\}^{2} d x-\pi\{1\}^{1} d x=\pi[x-1] d x
$$

$$
\text { Limit }=[1,4]
$$

$$
\begin{aligned}
V & =\int_{1}^{4} \pi(x-1) d x \\
& =\pi\left[\frac{1}{2} x^{2}-x\right]_{1}^{4}=\frac{9}{2} \pi
\end{aligned}
$$

$\widehat{\mathbf{A}}$ Example

The region bounded by $y=\cos x$ and the x-axis on the interval $\left[0, \frac{\pi}{2}\right]$ is rotated about the x-axis. Find the volume of the resulting solid.
(a) 1
(b) $\frac{\pi^{2}}{2}$
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{4}$
(e) $\frac{\pi^{2}}{4} \leftarrow$ correct

$\overrightarrow{\mathbf{A}}$ Example

The region bounded by $y=e^{x}$ and the x-axis on the interval $[0,2]$ is rotated about the x-axis. Find the volume of the resulting solid.
(a) $\frac{\pi e^{4}}{2}$
(b) $\frac{\pi e^{2}}{2}$
(c) $\frac{\pi}{2}\left(e^{4}-1\right) \quad \leftarrow$ correct
(d) $\frac{\pi}{2}\left(e^{2}-1\right)$
(e) $2 \pi\left(e^{4}-1\right)$

$\widehat{\mathbf{A}}$ Example

The region bounded by the curves $y=x^{2}$ and $y=1$ is rotated about the line $y=1$. Find the volume of the resulting solid.
(a) $\frac{8 \pi}{15}$
(b) $\frac{8 \pi}{5}$
(c) $\frac{4 \pi}{3}$
(d) $\frac{12 \pi}{5}$
(e) $\frac{16 \pi}{15}$

$\overrightarrow{\mathbf{A}}$ Example

If we revolve the region bounded by $y=1-x^{2}$ and $x-y=1$ about the line $y=3$, which of the following integrals gives the resulting volume?
(a) $\int_{-1}^{2} 2 \pi(3-x)\left(x^{2}-x+2\right) d x$
(b) $\int_{-2}^{1} \pi\left(\left(2+x^{2}\right)^{2}-(4-x)^{2}\right) d x$
(c) $\int_{-1}^{2} 2 \pi(x-3)\left(x^{2}-x+2\right) d x$
(d) $\int_{-2}^{1} \pi\left((4-x)^{2}-\left(2+x^{2}\right)^{2}\right) d x$
(e) $\int_{-1}^{2} \pi\left(\left(2+x^{2}\right)^{2}-(4-x)^{2}\right) d x$

$\widehat{\mathbf{A}}$ Example

Consider the region R bounded by $y=\sqrt{x}, y=1, x=0$. Find the volume
obtained by rotating the region R about the line $y=1$.
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{2}$
(c) $\frac{7 \pi}{6}$
(d) $\frac{\pi}{3}$
(e) $\frac{5 \pi}{6}$

$\widehat{\mathbf{A}}$ Example

Which of the following integrals gives the volume of the solid obtained by rotating the region bounded by $y=5-x^{2}$ and $y=1$ about the x-axis.
(a) $\pi \int_{-2}^{2}\left(1-\left(5-x^{2}\right)^{2}\right) d x$
(b) $\pi \int_{-2}^{2}\left(4-x^{2}\right)^{2} d x$
(c) $2 \pi \int_{-2}^{2} x\left(4-x^{2}\right) d x$
(d) $\pi \int_{-2}^{2}\left(\left(5-x^{2}\right)^{2}-1\right) d x \quad \leftarrow$ correct
(e) $2 \pi \int_{-2}^{2} x\left(x^{2}-4\right) d x$

$\widehat{\mathbf{A}}$ Volume by disks perpendicular to the y axis

Find the volume of the solid that is obtained
Volume of solid of revolution around y axis when the region between the curve $y=x^{3}$ Step 1: Plot the graph and $x=0$ between the interval $0 \leq y \leq 8$ is revolved about the y-axis
Step2. Find the size of a perpendicular slice at y

- At y : Thickness $d y \Rightarrow$ Cross section $A(y)$

$$
\pi[g(y)]^{2}
$$

- For $y=f(x)$, solve for $x=f^{-1}(y)$

Step3. Find the volume of a slice at y

- At y : Thickness $d y \Rightarrow$ Cross section $A(y)$
- $d V=\pi[g(y)]^{2} d y$

Step4. Find the upper/lower limits for y
Step5. Set up integral and evaluate $V=\int_{c}^{d} A(y) d y=\int_{c}^{d} \pi[g(y)]^{2} d y$

$$
\begin{aligned}
& A(x)= \\
& \pi(\sqrt[3]{y})^{2} d y \\
& \text { Radius } \\
& =\sqrt[3]{y} \\
& V\left(\Longleftrightarrow=\pi[g(y)]^{2} d y\right. \\
& 0 \leq y \leq 8 \text { (limits) }
\end{aligned}
$$

$$
\begin{aligned}
V & =\int_{a}^{b} \pi[g(y)]^{2} d y \\
& =\int_{0}^{8} \pi y^{\frac{2}{3}} d y \\
& =\pi\left[\frac{3}{5} x^{\frac{5}{3}}\right]_{0}^{8}
\end{aligned}
$$

$\widehat{\mathbf{A}}$ Volume by Washer perpendicular to the y axis

Find the volume of the solid that is

Volume of solid of revolution around y axis Step 1: Plot the graph of $f(y), g(y) \mathrm{w} / f>g$ obtained when the region between the curve $y=x^{2}$ and $y=2 x$ is revolved about the y-axis
Step2. Find the size of a perpendicular slice at y

- At y : Thickness $d y \Rightarrow$ Cross section $A(y)$
- Washer $=$ Large disc - small disc

$$
=\pi[f(y)]^{2}-\pi[g(y)]^{2}
$$

Step3. Find the volume of a slice at y

- At x : Thickness $d x \Rightarrow$ Cross section $A(y)$

$$
\text { - } d V=\pi\left([f(y)]^{2}-[g(y)]^{2}\right) d y
$$

$$
V(\Leftrightarrow)=\pi\{\sqrt{x}\}^{2}-\pi\{1\}^{1}=\pi[x-1]
$$

$$
\text { Limit }=[1,4]
$$

Step5. Set up integral and evaluate

$$
\begin{aligned}
V & =\int_{a}^{b} A(y) d y \\
& =\int_{a}^{b} \pi\left([f(y)]^{2}-[g(y)]^{2}\right) d y
\end{aligned}
$$

$$
V=\int_{1}^{4} \pi(x-1) d x
$$

$$
=\pi\left[\frac{1}{2} x^{2}-x\right]_{1}^{4}=\frac{9}{2} \pi
$$

$\widehat{\mathbf{M}}$ Example

Find the volume of the solid obtained by rotating the region bounded by $x=y^{2}$ and $x=y^{3}$ around the y-axis.
(a) $\frac{\pi}{35}$
(b) $\frac{\pi}{10}$
(c) $\frac{\pi}{12}$
(d) $\frac{2 \pi}{35} \leftarrow$ correct
(e) $\frac{\pi}{105}$

$\widehat{\mathbf{A}}$ Example

Consider the region R bounded by $y=2 x^{2}$ and $y=1$, first quadrant only.
Find the volume obtained by rotating R about the y-axis.
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{2}$
(c) π
(d) $\frac{4 \pi}{5}$
(e) None of the above

Volume by cylindrical shells about the x-axis

Use cylindrical shells to find the volume

Volume of solid of revolution around x axis Step 1: Plot the graph

Step2. Find the size of a parallel slice at y At y : Thickness $d y \Rightarrow$ Cross section $A(y)$

$$
2 \pi f(y) d y
$$

Step3. Find the volume of a slice at y

- At y : Thickness $d x \Rightarrow$ Cross section $A(y)$
- $d V=2 \pi f(y) d y$

Step4. Find the upper/lower limits for y
Step5. Set up integral and evaluate $V=\int_{a}^{b} A(y) d y=\int_{a}^{b} 2 \pi y f(y) d y$
of the solid generated when the shaded region is revolved about the indicated axis.

$$
\begin{aligned}
V= & \int_{0}^{2} 2 \pi y\left[y-y^{2}+2\right] d y \\
& =2 \pi \int_{0}^{2}\left[y^{2}-x^{3}+2 y\right] d y \\
& =2 \pi\left[\frac{1}{3} y^{3}-\frac{1}{4} y^{4}+y^{2}\right]_{0}^{2} \\
& =2 \pi\left[\frac{8}{3}-\frac{16}{4}+4\right] \\
& =\frac{16 \pi}{3}
\end{aligned}
$$

$\widehat{\mathbf{A}}$ Example

Consider the region bounded by the two curves $y=\cos x, y=\sin x$ and the two lines $x=0$ and $x=\frac{\pi}{4}$.
Which of the following represents the volume of this region being rotated about the line $x=-1$?
(a) $\int_{0}^{\frac{\pi}{4}} 2 \pi(x+1)(\cos x-\sin x) d x \quad \leftarrow$ correct
(b) $\int_{0}^{\frac{\pi}{4}} 2 \pi(x+1)(\sin x-\cos x) d x$
(c) $\int_{-1}^{\frac{\pi}{4}} 2 \pi(x+1)(\cos x-\sin x) d x$
(d) $\int_{0}^{\frac{\pi}{4}} 2 \pi(x+1)\left(\cos ^{2} x-\sin ^{2} x\right) d x$
(e) $\int_{0}^{\frac{\pi}{4}} \pi\left(\cos ^{2} x-\sin ^{2} x\right) d x$

$\overrightarrow{\mathbf{A}}$ Example

Find the volume of the solid found by rotating the region bounded by the curves $y=-x^{2}+2 x$ and $y=0$ about the y-axis.
(a) $\frac{16}{3} \pi$
(b) $\frac{8}{3} \pi$
(c) $\frac{4}{3} \pi$
(d) $\frac{2}{3} \pi$
(e) $\frac{1}{3} \pi$

A M Example

Consider the region R bounded by $y=x^{3}, y=-x+2, x=0$, and $x=1$.
(a) Sketch the region R.
(b) Set up the integral that gives the volume obtained by revolving the region R about the x-axis using the method of washers. DO NOT EVALUATE THE INTEGRAL.
(c) Set up the integral that gives the volume obtained by revoling the region R about the line $x=1$ using the method of cylindrical shells. DO NOT EVALUATE THE INTEGRAL.

$\widehat{\mathbf{A}}$ Example

Consider the reaion R bounded bv $u=4 x-x^{2}$ and $u=0$.
Which of the following integrals gives the volume of the
solid obtained by revolving R about the line $x=-2$?
(a) $\int_{0}^{4} 2 \pi(2-x)\left(4 x-x^{2}\right) d x$
(b) $\int_{0}^{4} 2 \pi x\left(4 x-x^{2}\right) d x$
(c) $\int_{0}^{4} 2 \pi(x+2)\left(4 x-x^{2}\right) d x$
(d) $\int_{0}^{4} 2 \pi(x-2)\left(4 x-x^{2}\right) d x$
(e) None of the above

$\widehat{\mathbf{A}}$ Example

Consider the region R bounded by $y=\ln x, y=0$, and $x=2$. If this region is revolved about the line $y=-2$:
(a) Set up but do not evaluate the integral that gives the volume using the method of shells.
(b) Set up but do not evaluate the integral that gives the volume using the method of washers.

$\widehat{\mathbf{A}}$ Example

Consider the region bounded by the curves $x=y^{2}-2 y$ and the y-axis. Which of the following represents the volume of solid formed when the region is rotated about $y=4$?
(a) $\int_{0}^{2} 2 \pi y\left(y^{2}-2 y\right) d y$
(b) $\int_{0}^{2} 2 \pi y\left(2 y-y^{2}\right) d y$
(c) $\int_{0}^{2} 2 \pi(4-y)\left(y^{2}-2 y\right) d y$
(d) $\int_{0}^{2} \pi(y-4)\left(4 y^{2}-y^{4}\right) d y$
(e) $\int_{0}^{2} 2 \pi(4-y)\left(2 y-y^{2}\right) d y \quad \leftarrow$ correct

